
ISSN 1744-1986

T e c h n i c a l R e p o r t N O 2010/ 22

Designing and evaluating an
intention-based comment enforcement

scheme for Java

Kevin Matz

15 September, 2010

Department of Computing
Faculty of Mathematics, Computing and Technology
The Open University

Walton Hall, Milton Keynes, MK7 6AA
United Kingdom

http://computing.open.ac.uk

Designing and evaluating an intention-based
comment enforcement scheme for Java

A dissertation submitted in partial fulfilment
of the requirements for the Open University’s

Master of Science Degree
in Software Development

Kevin Matz
X9786928

5 March 2011

Word count: 15,872

 2

 3

Preface

I would like to thank my supervisor, Dr. Les Neal, for his extremely helpful guidance

and advice throughout this research project. His constant support and encouragement

are very much appreciated. I would also like to thank my specialist adviser, Dr. Yijun

Yu, for his very useful feedback on early drafts.

I extend my appreciation to Dr. Frank Martin, who kindly agreed to distribute the

survey to members of the BCS Advanced Programming Specialist Group, which

greatly increased the number of survey responses.

I am also very grateful to all of the participants who completed the survey. I am

pleased by the insightful and constructive feedback that was provided on the

proposed approach described in this dissertation.

 4

 5

Table of contents

Preface ..3	
Table of contents ..5	
List of figures ...9	
List of tables ...11	
Abstract ..13	
1	 Introduction ...15	

1.1	 Program comprehension as a major cost factor in software maintenance16	
1.2	 Intention and rationale in software development ..17	
1.3	 The loss of intention and rationale in the transformation from requirements
to code ..18	
1.4	 Roadmap for this dissertation..21	

2	 Research methods for investigating the problem and justifying a new solution..23	
2.1	 Investigating the need for a solution ...23	

2.1.1	 Choosing a research method..23	
2.1.2	 Planning, designing, and carrying out the survey24	

2.2	 Formulating requirements for a solution ...26	
3	 Making the case for the need for a solution ...27	

3.1	 Evidence from the literature ..27	
3.2	 Evidence from the survey of practitioners ..28	

3.2.1	 Characteristics of respondents...29	
3.2.2	 Survey results and interpretation...30	
3.2.3	 Hypothesis testing ...35	
3.2.4	 Concluding interpretation..36	

4	 Making the case for a specific category of solution...39	
5	 Formulating requirements for a solution ..43	

5.1	 Exploring program comprehension ...43	
5.1.1	 Top-down model ...44	
5.1.2	 Bottom-up model...45	
5.1.3	 Opportunistic model ..45	

5.2	 General software engineering advances that have improved maintenance...45	
5.3	 Evaluating past “constructive” solutions...46	

5.3.1	 Approaches focusing on internal documentation46	
5.3.2	 Approaches focusing on external documentation48	
5.3.3	 Approaches blending internal and external documentation50	
5.3.4	 Radically new programming systems...53	
5.3.5	 Documentation enforcement systems...54	

5.4	 Exploring “interpretative” tools ..54	
5.5	 Requirements derived from the survey ...56	
5.6	 Additional requirements ..56	
5.7	 Summarisation and categorisation of requirements58	

6	 Research methods for designing and evaluating a solution63	
6.1	 Conceptualising, designing and elucidating a proposed solution..................63	
6.2	 Implementing a prototype of the designed solution64	

 6

6.3	 Constructing a sample project using the language ..64	
6.4	 Evaluating the proposed solution ..64	

6.4.1	 Evaluation by the author..65	
6.4.2	 Evaluation involving outside evaluators ...65	

7	 Proposing, designing, and building a solution...69	
7.1	 The structure of the proposed solution ..69	
7.2	 Introducing Design Intention Driven Programming and Java with Intentions
 70	
7.3	 The prototype precompiler and the Java with Intentions language
specification..75	
7.4	 The sample application project...75	
7.5	 Summary...75	

8	 Evaluating the proposed solution ..77	
8.1	 Evaluation by the author..77	

8.1.1	 Degree of fit to requirements..77	
8.1.2	 Potential benefits of the scheme ...80	
8.1.3	 Attitudes in the literature towards the general approach80	
8.1.4	 Comparison with alternative approaches..81	
8.1.5	 Criticisms of the approach..82	
8.1.6	 Evaluation of the Java with Intentions language design84	
8.1.7	 Personal experiences constructing the sample project86	

8.2	 External evaluation: Results, analysis, and interpretation of Part B of the
survey ...87	

8.2.1	 Survey results and interpretation ..88	
8.2.2	 Further analysis ..92	
8.2.3	 Interpretation ..93	

8.3	 Summary..94	
9	 Evaluating the research methods and the evaluation of the proposed solution....95	

9.1	 Questionnaire survey ..95	
9.1.1	 Evaluation of execution of method..95	
9.1.2	 Validity of survey results...96	

9.2	 Formulating requirements ...99	
9.3	 Conceptualising, designing, and elucidating the solution99	
9.4	 Defining the language syntax and implementing the prototype....................99	
9.5	 Self-evaluation of the solution...100	
9.6	 General remarks on validity ..101	
9.7	 Summary..101	

10	 Conclusions ...103	
10.1	 Judging the feasibility, practicality, and effectiveness of the DIDP/JWI
scheme ..103	
10.2	 On the likelihood of adoption of the scheme...105	
10.3	 Contribution to knowledge ..107	
10.4	 Project review..108	

10.4.1	 Addressing the research question ...108	
10.4.2	 Reflecting on the project ..108	

10.5	 Opportunities for future research...109	
References ..111	
Bibliography ...119	
Index ...121	

 7

Appendix A: Extended abstract..123	
Appendix B: Design Intention Driven Programming and Java with Intentions129	

B.1	 Introduction ..129	
B.2	 The role of intentions in programming and the case for special constructs to
record intentions ...129	

B.2.1	 Documentation enforcement..131	
B.2.2	 Structuring documentation according to object-oriented principles....132	
B.2.3	 Explicitly documenting instances of design patterns...........................133	
B.2.4	 Formulating and documenting software designs as graphs of intentions
 133	

B.3	 Introducing a syntax for intention comments in the JWI language134	
B.3.1	 Free-standing intention comments...134	
B.3.2	 Inline intention comments ...140	

B.4	 Documenting instances of patterns using intention comments...................140	
B.5	 Using graphs of intention comments to represent the design of a system..142	

B.5.1	 Graphical representation of intention graphs with UML.....................142	
B.5.2	 Navigation between intention comments in an IDE............................144	

B.6	 Generating hypertext documentation and the relationship between Java with
Intentions and Javadoc ...145	
B.7	 Responses to common objections and questions ..146	

Appendix C: The prototype Java with Intentions precompiler implementation147	
C.1	 An overview of how JWI programs are processed.....................................147	
C.2	 Scope of prototype implementation..148	
C.3	 Demonstration of current state of implementation150	

Appendix D: Walkthrough of the precompiler implementation and sample
application (Vocabulary Trainer) ...151	

D.1	 Prerequisites for running the precompiler and sample application151	
D.2	 Inspecting the sample application ..151	
D.3	 Inspecting the precompiler’s grammar files ...152	
D.4	 Inspecting the remainder of the precompiler code153	
D.5	 Running the precompiler using the sample application as input................154	

Appendix E: The questionnaire and summary statistics ..157	
Appendix F: Raw survey response data ...175	
Appendix G: The article included with the survey...179	

Introducing Design Intention Driven Programming and Java with Intentions....179	
Introducing Design Intention Driven Programming ..180	
Introducing Java with Intentions ..181	

Free-standing intention comments ...181	
Inline intention comments ..183	

Summary ..184	
Appendix H: Ethical issues ..185	

H.1	 Ethical issues involving the proposed solution ..185	
H.2	 Ethical issues involving the survey research ..185	

Appendix I: Hypothesis testing procedures..187	
I.1	 Construction of indices ..187	
I.2	 Hypothesis testing procedure ...187	

 8

 9

List of figures

Figure 1: Geographic distribution of survey respondents (data obtained from reverse

IP lookup) ...29	
Figure 2: Years of software development experience reported by survey respondents

..29	
Figure 3: Reported percentage of developers’ time spent on software maintenance.30	
Figure 4: Age of systems that respondents primarily work on...................................30	
Figure 5: An intention comment and a class linking to it ..71	
Figure 6: An abstract intention comment defining a general design pattern..............72	
Figure 7: A concrete intention extending the abstract pattern definition to specify a

particular instance of the pattern ..72	
Figure 8: A component of the pattern instance links itself to the intention comment

for the pattern instance ...73	
Figure 9: Requirements represented in code using JWI...73	
Figure 10: Modified UML class diagram illustrating an intention graph subset

(description texts for goals, intentions, and requirements omitted)74	
Figure 11: Correct implementation of the “sum of numbers between 1 and 10”

intention..130	
Figure 12: Incorrect implementation of the “sum of numbers between 1 and 10”

intention..130	
Figure 13: Source code section with intention documented via a simple comment 130	
Figure 14: A simple intention comment...134	
Figure 15: Intention comments declared using keywords goal and requirement

..135	
Figure 16: Adding a text field to an intention comment ..135	
Figure 17: Linking a class to intention comments ...136	
Figure 18: Linking a class to multiple intentions, requirements, or goals136	
Figure 19: Linking a method to an intention, requirement, or goal137	
Figure 20: Inheritance of intention comments using the extends keyword137	
Figure 21: Declaration of abstract intention comments representing requirements.138	
Figure 22: Examples of single and set reference fields in an intention comment....139	
Figure 23: Example of syntax for nested inline intention comments.......................140	
Figure 24: An abstract intention defining a general design pattern141	
Figure 25: A concrete intention extending the abstract pattern definition to specify a

particular instance of the pattern ..141	
Figure 26: A component of the pattern instance links itself to the intention comment

for the pattern instance ...141	
Figure 27: UML class diagram representing the intention graph for the Model-View-

Controller pattern instance in the Vocabulary Trainer sample application......143	
Figure 28: UML class diagram for the subset of the intention graph for the

Vocabulary Trainer application relevant to the loading of flashcard set files..144	
Figure 29: Screenshot of Vocabulary Trainer application152	
Figure 30: Console output from JWI precompiler ...154	
Figure 31: Console output showing a contextual analysis error detected by the JWI

precompiler...155	
Figure 32: Output file QuizState.java generated by commenting-out JWI constructs

present in the input file QuisState.jwi ..155	

 10

 11

List of tables

Table 1: Groups invited to participate in the survey ..26	
Table 2: Seven-point Likert scale...28	
Table 3: Documentation artefacts most frequently used by survey respondents31	
Table 4: Documentation artefacts least frequently used by survey respondents........32	
Table 5: Respondents generally disagreed with statements critical of commenting..33	
Table 6: Positively-phrased statements about comments tended to garner strong

agreement ...34	
Table 7: Hypotheses about respondents’ preferences and practices relating to

commenting ..36	
Table 8: Requirement R1 ...43	
Table 9: Requirement R2 ...44	
Table 10: Requirement R3 ...45	
Table 11: Requirement R4 ...45	
Table 12: Requirements R5 to R7 ..47	
Table 13: Requirement R8 ...48	
Table 14: Requirement R9 ...49	
Table 15: Requirements R10 and R11 ...49	
Table 16: Requirement R12 ...50	
Table 17: Requirements R13 to R15 ..51	
Table 18: Requirements R16 to R18 ..52	
Table 19: Requirement R19 ...53	
Table 20: Requirement R20 ...54	
Table 21: Requirement R21 ...55	
Table 22: Requirement R22 ...55	
Table 23: Requirement R23 ...56	
Table 24: Requirements R24 and R25 ...56	
Table 25: Requirement R26 ...57	
Table 26: Requirement R27 ...57	
Table 27: Requirement R28 ...57	
Table 28: Legend of degree-of-fit codes used in Table 29...58	
Table 29: Summary and categorisation of requirements with degree of fit for

potential solutions ..59	
Table 30: Methods to be used in the author’s own evaluation of the proposed solution

..65	
Table 31: Legend of degree-of-fit codes used in Table 32...77	
Table 32: Summary and categorisation of requirements with degree of fit for

potential solutions ..78	
Table 33: Major criticisms of the Design Intention Driven Programming approach.82	
Table 34: Evaluation of Java with Intentions against language evaluation criteria

(Bjork, 2009) ..85	
Table 35: “Critical” remarks in written survey responses evaluating the solution90	
Table 36: “Supportive” remarks in written survey responses evaluating the solution

..91	
Table 37: Alternatives to the proposed solution suggested by respondents...............91	
Table 38: Hypotheses about factors influencing respondents’ support of the proposed

solution ...92	

 12

Table 39: Checklist of recommended steps for project teams considering adopting
DIDP/JWI ...107	

Table 40: Evaluation of satisfaction of research question..108	
Table 41: Opportunities for further research ..109	
Table 42: Functional requirements defining the scope of the Java with Intentions

precompiler reference implementation...148	
Table 43: Numeric response data for participants 1 through 20175	
Table 44: Numeric response data for participants 21 through 38177	
Table 45: Indices used in hypothesis tests..187	

 13

Abstract

Software maintenance forms a significant portion of the cost of large-scale software
projects. A time-consuming part of maintenance is program comprehension – reading
legacy code to understand how and where to make changes. The process of
understanding existing code involves reconstructing the design intentions and
rationale of the original developers. This dissertation argues that explicitly recording
intention and rationale information during design and construction eases program
comprehension during maintenance.

This dissertation conducts a survey of practicing software developers to understand
difficulties in software maintenance and opinions on software documentation. The
results and a literature survey are then used to argue that significant problems exist
which can best be dealt with by designing a new technology-based solution.

By reviewing the program comprehension literature and examining past solutions,
requirements are formulated for an “ideal” solution for recording intention and
rationale documentation.

A partial solution, Design Intention Driven Programming, is proposed, which
encourages developers to record design intentions before writing code. The process
is supported by a language, Java with Intentions, which adds intention comments,
first-class documentation constructs, to the Java language. The compiler flags as
errors any artefacts (e.g., classes) not described by intention comments and uses
complexity metrics to detect “empty” comments. A rudimentary prototype of a
precompiler for the language and a sample application are constructed as proofs of
concept.

The solution is evaluated using several analyses and by surveying developers for
feedback on its practicality. Respondents’ opinions are divided on the solution’s
feasibility and utility. Numerous problematic issues are identified, including
resistance of developers to write documentation, limitations of the documentation
enforcement mechanism, and the lack of concrete evidence of long-term cost
savings. The evaluation suggests that, while the approach may be promising for some
projects and teams, its unpopularity with most developers renders it impractical for
typical commercial projects.

 14

 15

1 Introduction

Large-scale enterprise software projects are costly endeavours. While the initial

analysis, design, and construction of a software system can often take dozens or even

hundreds of person-years of effort, over the system’s entire operational life, the

majority of the cost and labour will be spent during the software maintenance phase

(Pressman, 2010, p. 763; van Vliet, 2008, p. 469).

Software maintenance, also known as software evolution, refers to the phase after a

system has first gone into productive operation, during which the system undergoes

adaptations to meet changing requirements, and corrections to fix defects (Pfleeger,

1998, p. 412).

Maintenance is considered one of the most problematic issues in software

development:

• It has been estimated that approximately 60 to 70 percent of a typical

software organisation’s resources are spent on software maintenance

(Pressman, 2010, p. 763; Yip et al., 1994, p. 71).

• According to a survey, 70.2% of project managers regard the software

maintenance process as “inefficient” (Sousa and Moreira, 1998, p. 270).

• Software developers in maintenance projects tend to report low morale and

high levels of job frustration (van Vliet, 2008, p. 474).

• The percentage of resources spent on maintenance as opposed to new

development tends to increase over time; in 2005, an estimated 76 percent of

developers in the U.S. were considered “maintenance developers” as opposed

to developers1 building new systems; this has increased from 17 percent in

1975 and 47 percent in 1990 (Jones, 2006, p. 4).

Because of the quantity of time, money, and effort spent on software maintenance,

any potential solutions that even partially alleviate fundamental problems in software

maintenance would be welcomed as cost-saving measures in software organisations.

1 In this dissertation, we differentiate between “maintenance developers” and developers involved in
constructing new systems. Used alone, the general term “developer” refers to both groups, i.e., the
general population of all software developers.

 16

1.1 Program comprehension as a major cost
factor in software maintenance

Software maintenance consists of the following types of activities (Swanson, 1976):

1. Corrective maintenance: correcting reported defects

2. Adaptive maintenance: performing changes necessitated by modifications to

the system’s environment

3. Perfective maintenance: adding functionality or improving performance,

maintainability, test coverage, etc.

4. Preventive maintenance: refactoring and proactive correction of faults

identified by developers but not yet reported by users

Knowing where and how to make a change requires an understanding of the structure

and functioning of either parts of the system, or the entire system. The process of

gaining an understanding a system’s source code is referred to as program

understanding or program comprehension (Corbi, 1989). It can also be called

reverse engineering, though this term tends to imply that higher-level abstractions

and models are being derived and documented (Pressman, 2010, p. 771).

Program comprehension is one of the largest factors contributing to the costs of

software maintenance. Estimates of the percentage of time developers spend on this

activity range from 30 to 60 percent (Devanbu, 1990, p. 250), to 40 percent (Sousa

and Moreira, 1998, p. 269), to as high as 50 to 90 percent (Standish, 1984).2

To understand the behaviour and structure of a program, developers can read the

source code, run and trace the program, or read documentation about the program

(Corbi, 1989). Although analysis and design documentation can be useful,

documentation is not always available, up-to-date, or relevant, and as a result, source

code and comments are the most trusted and most used artefacts used by developers

during program comprehension (LaToza et al., 2006, p. 499).

2 No more recent studies on this topic could be located. The percentage of time spent on program
comprehension might have decreased since these studies due to improvements in software engineering
techniques, or might have increased due to increases in the size and complexity of systems.

 17

Program comprehension is characterised as a difficult task. The size and complexity

of modern systems is a major factor. Another primary reason for the difficulty is the

fact that intentions and rationale are not explicitly expressed in source code, unless

explicitly stated in program comments.

1.2 Intention and rationale in software
development

To understand what is meant by intention and rationale, let us examine the Seven

Stages of Action model (Norman, 1998, p. 46), which argues that humans perform

the following steps when interacting with a device:

1. Forming a goal
2. Forming an intention
3. Specifying an action
4. Executing an action
5. Perceiving the state of the world
6. Interpreting the state of the world
7. Evaluating the outcome

Applying this model to computer programming, we can imagine that a developer

implementing a module or making a change first formulates a high-level goal, such

as “fulfil the requirement that the user shall be able to sort the song titles in a

playlist”. There may be many ways to fulfil this goal. The developer formulates an

intention – a way of reaching the goal – which in this case may be to implement the

Quicksort algorithm in order to sort records. The developer then formulates a plan,

consisting of one or more actions, to fulfil the intention (Bratman, 1987, p. 29). The

developer then executes the actions, which involve writing or changing pieces of

code according to the intention. “Perceiving and interpreting the state of the world”

and “evaluating the outcome” correspond to unit testing activities: the developer

verifies whether the goal and intentions were carried out correctly. Iterations will

take place if the evaluation finds that the goal and intentions have not yet been

fulfilled correctly.

A developer’s intention, then, is what he or she wants a component or aspect of the

system to perform, and how the system should do it. The intention is a

 18

“characterisation of a desired action” (Bratman, 1987, p. 1), or “a desire that

something be accomplished” (Simonyi, 1995). A developer carries out an intention

by means of actions involving the writing of source code.

A major category of software defects consists of cases where the developer has

mistakenly written code that does not match his or her original intention. For

example, the developer may intend to implement the Quicksort algorithm, but he or

she makes an error such that the sort order is sometimes incorrect. What was

implemented is thus not really the Quicksort algorithm at all; the implementation

does not match the intention.

Rationale is the reasoning behind the intention. Rationale is an explanation of why

something is implemented in a particular way (LaToza et al., 2006, p. 499), or why

one particular alternative was chosen over other alternatives. For example, why was

Quicksort and not some other algorithm chosen in this particular instance?

Lengthy descriptions of rationale are unimportant for many trivial implementation

details, but at higher levels of design and architecture, understanding the reason why

the system was designed in a particular way can prevent later developers from

choosing alternatives that the original designers have already determined to be

problematic or unsuitable.

In summary, an intention is what the designer or developer wants some element of

the system to do and how it should do it, and the rationale is why the designer

believes it should be that way. Simonyi (1995) asserts that “the forming of some

intention in the programmer’s mind” is “a key element in programming”.

1.3 The loss of intention and rationale in the
transformation from requirements to code

In a typical “ideal” document-driven software design process, designing and building

a system involves a series of documentation artefacts. There are many variations, but

typically, goals for the system are first determined (van Lamsweerde, 2001), from

which a requirements specification document is produced. From the requirements,

 19

architectural designs and functional specifications may be produced. Technical

design specifications may then be written to concretise how functionality is to be

implemented. Source code is then constructed on the basis of the functional and

technical specifications.

At each stage of this process, design decisions are made, by which high-level

abstractions are translated into lower-level, more concrete details. For example, a

requirement might state that the “user interface shall conform to the organisation’s

standard conventions”. Based on this, the functional design might specify that the

application must use pull-down menus, with a specific wording and ordering for

consistency across the organisation’s systems. The technical design might then

specify that pull-down menus are to be implemented using a particular GUI

component, and that menu items are to be defined in an XML file. The developer

might then need to devise a format for the XML file, and write code to populate the

GUI component with data loaded from the file.

At each stage in the process, each respective document tends to focus on presenting

the design that was arrived at by a series of decisions that took place at that stage

(van Vliet, 2008, p. 474). Ideally, there will be a cross-reference to preceding

documents, and there will be a discussion or a justification of why one particular

design decision was chosen. Very frequently, however, this information is missing.

This means that information about higher-level abstractions can be “lost” at each

stage (van Vliet, 2008, p. 481). Translation from a higher-level, abstract

conceptualisation to a more fine-grained specification is, in general, a lossy process,

as the architectural principles and design decisions, and rationale behind those

choices, are usually not explicitly stated and transferred to the new document. This is

especially true at the transition from natural-language specifications to programming-

language source code.

Also, this discussion so far has assumed that an ideal, rational design process has

been followed; in many organisations, software development is a more disorganised

process that does not involve formal stages and documentation artefacts, and even

teams that attempt to follow a formal document-driven process are rarely able to

 20

accomplish it as planned (Parnas, 1986). Whether design documents have been

produced and have become outdated or are of poor quality, or no design documents

exist at all, the result is that maintenance developers must rely on the source code

and comments in the source code as the primary source of understanding of the

system (LaToza et al., 2006, p. 499; de Souza et al., 2005, p. 74).

Visualisation tools (discussed later in this dissertation) can aid somewhat in

uncovering structures in software systems. Reverse-engineering techniques such as

processes for generating goal models from existing code (Yu et al., 2005) are also

promising. Visualisation tools and reverse-engineering techniques are still no “silver

bullet”; they are labour-intensive to use (they generally cannot automatically identify

relevant structures or underlying architectural principles, and even if they could, the

human operator must still inspect, comprehend, and verify them and synthesise

models), and they depend on the quality and consistency of naming and the presence

and accuracy of comments.

When source code contains little or no discussion of the original developers’

intentions and rationale, maintenance developers need to painstakingly parse the

source code to figure out what each part of the program does, how it works, and how

it interacts with other components of the program. In effect, when intentions and

rationale are not available, maintenance developers must reconstruct that

understanding, which is time-consuming, error-prone, and sometimes simply

impossible because the information about the original higher-level abstractions is

simply no longer present. Respondents to a survey “most often said that

understanding the original programmer’s intent was the most difficult problem facing

the person asked to change the function of [a] program” (Fjeldstad and Hamlen,

1979, p. 22).

This dissertation argues that, if designers and developers were to make a systematic

effort to record intention and rationale information in a structured way when

designing and writing a program, whether in documents, comments, or some new

form, it would relieve maintenance developers of much of the effort of trying to

reconstruct that information, thus reducing the time spent on program comprehension

and potentially leading to savings in long-term maintenance costs.

 21

Because current software development practices and technologies do not do a

sufficient job of recording intention and rationale information, it is the goal of this

dissertation to either identify or formulate some form of approach or “solution” that

will both encourage and enable the proper recording of such information during the

construction of software programs. This solution could take the form of a technique

or process, a new or improved tool or technology, or some combination of these.

This dissertation will thus address the following multi-part research question:

 PART 1 What evidence can be found to justify the design of a new solution

to aid the recording of intention and rationale information during
software development?

 PART 2 What are the requirements for an “ideal” solution?

 PART 3 Given the requirements for an ideal solution, can a design for a

solution be developed that is feasible, practical, and effective?

As was discussed above, a fundamental motivation underlying this investigation is

the desire to reduce the long-term cost of software maintenance projects. Given a

specification and implementation of a proposed solution, it would be interesting to

test, by means of some form of empirical investigation, whether the solution actually

leads to long-term cost savings in software projects. However, as will be explained

later in this dissertation, an investigation of this type is not feasible within the time

limits imposed by this research project. Because it cannot be adequately addressed, it

is not explicitly included in the research question.

1.4 Roadmap for this dissertation

In the present chapter, with reference to the research literature, we have explored

difficulties posed by software maintenance and program comprehension, identified

the role of intention and rationale in software development, and stated the research

question.

 22

Evidence to justify a solution will be gathered from the research literature and from a

survey of practicing software developers. Chapter 2 describes the research methods

involved in these tasks, and Chapter 3 carries out the research methods in order to

make the case for the need for a solution. (This will address Part 1 of the research

question.)

Chapter 4 explores general categories of solution and chooses the most promising

category for investigation.

Chapter 5 draws again upon the research literature and the results of the survey in

order to formulate a list of requirements for an “ideal” solution. (This will address

Part 2 of the research question.)

Chapter 6 describes research methods involved in designing and evaluating a

solution.

Chapter 7 presents a design for a novel solution intended to meet most of the

identified requirements, and in Chapter 8, this solution will be critically evaluated by

several means. Chapter 9 then critically examines the research methods used and

evaluates the reliability and validity of the evaluation of the solution.

Chapter 10 concludes the dissertation with a summary and interpretation of the

evaluation in order to answer Part 3 of the research question. This chapter also

reflects upon the research project, states the dissertation’s contribution to knowledge,

and discusses opportunities for further research.

 23

2 Research methods for investigating
the problem and justifying a new
solution

In order to justify the investigation and design of a new solution, we shall examine

problems experienced by software developers in maintenance projects, and collect

requirements for a solution that will address these problems. This chapter explains

and justifies the research methods chosen for these tasks.

2.1 Investigating the need for a solution

A new solution can be justified if it can be shown that problems exist in the current

practice of software maintenance and that there is some potential to do things in an

improved way. The problems will shape the solution and its requirements.

As the first research method, an examination of the literature will be conducted to

find evidence of problems in software maintenance and program comprehension.

Referring to research conducted by others (“secondary sources”) is useful, but for

more credibility, a second research method shall be used to collect and analyse data

directly from practicing software development professionals. The results can be

checked against existing research.

2.1.1 Choosing a research method

Interviews with developers would yield useful qualitative data and would allow in-

depth explorations of difficulties encountered. However, interviews are time-

consuming and difficult to schedule; face-to-face interviews would limit participants

to the interviewer’s immediate geographical area, and strangers are unlikely to

volunteer for telephone interviews.

Questionnaire surveys are more promising; they can potentially reach a much larger

number of participants, and can yield useful quantitative and qualitative data.

 24

However, questionnaires with fixed lists of questions cannot probe individual

circumstances.

Web-based questionnaires are preferable to paper questionnaires as a URL can be

easily disseminated to participants (costs are negligible), a wider geographic base can

be reached, response rates tend to be higher, and responses require no manual

rekeying.

For these reasons, a web-based survey has been chosen.

2.1.2 Planning, designing, and carrying out the survey

The questionnaire actually serves two functions and thus has two parts:

• Part A asks participants about practices at their current organisation and

difficulties related to software maintenance and program comprehension, and

asks for personal opinions regarding software documentation;

• Part B is concerned with evaluating the solution (which will be presented in

Chapter 7). Part B of the survey will be described in Chapter 6.

The questionnaire is aimed primarily at practicing software developers. While

academic experts could be consulted instead, those who work hands-on in the

software industry will be best able to describe day-to-day problems in software

maintenance, and it is this group who would potentially use any proposed new

solution.

The survey is anonymous to encourage respondents to report frankly on issues and

problems in their organisations.

During the design of the questionnaire, advice was drawn from Sapsford (2007),

Weisberg et al. (1996), Jackson (1988), and Gray and Guppy (1994). Fowler (1995)

provided valuable guidance on writing and evaluating survey questions. Yip et al.

(1994), Sousa and Moreira (1998), Kajko-Mattsson (2005), de Souza et al. (2005),

LaToza et al. (2006), and Babar et al. (2006) are examples of surveys querying

 25

software developers and/or organisations about software maintenance and

documentation topics. Root and Draper (1983) address using questionnaires as a

software evaluation tool.

To analyse the data, simple summary statistics and analysis techniques will suffice;

some rudimentary hypothesis testing will be undertaken to identify relationships in

the data. Schlotzhauer (2009), Sapsford (2007), and Weisberg et al. (1996) provided

useful instruction on summarising quantitative data, analysing relationships, and

testing hypotheses. Qualitative coding as described by Richards (2005) will be

applied to open-ended textual questions.

The questionnaire consisting of Parts A and B is presented in Appendix E, together

with summary statistics. The raw survey response data is given in Appendix F.

The survey was hosted on-line using the service www.surveymonkey.com, chosen

amongst several similar services for its usability and cost. The survey’s URL was

distributed to participants; the first page was a welcome page with instructions.

A trial run of the survey was conducted with three colleagues. As a result of the

feedback, the questionnaire was shortened to remove several questions perceived as

redundant. Other questions were reworded for clarity.

The selection of participants represents a convenience sample, and this has

implications for validity that will be discussed in Chapter 9. Table 1 lists the groups

invited to take the survey3.

3 Due to the survey’s anonymity, it is not possible to reliably count the number of participants from
any particular category.

 26

Table 1: Groups invited to participate in the survey

Category Group

1 Software developer colleagues at the author’s (now previous)
employer, JEA Pension System Solutions in Victoria, BC,
Canada

2 Fellow Open University Computing MSc students (via the
M801 Chat forum)

3 Members of the Advanced Programming Specialist Group of
the British Computer Society

Group
invitations

4 Attendees of a talk given by the author at the Vancouver Island
Java Users’ Group

Personal
invitations

5 Friends and associates in the author’s personal network who
are software developers

6 Google AdWords text advertisements Web visitors
7 Visitors who located the survey via a web search

Referrals 8 Referrals from participants who forwarded the survey link to
their friends and colleagues

Incentives (free lunches and Amazon.co.uk gift vouchers) were offered to some

groups.

The survey collection was regularly monitored for suspicious activity. “Prank” and

empty submissions were rejected. Two partial submissions were retained where

participants had completed significant portions of the survey.

The examination of the literature and the results of the survey will be presented in

Chapter 3, where a case will be made to justify a new solution.

2.2 Formulating requirements for a solution

Goals and requirements for an ideal solution will be generated by the following

means:

• Surveying the research literature and analysing past attempts at solutions;
• Brainstorming and reflecting on personal experiences in software

development; and
• Interpreting responses of survey participants.

These methods will be put into practice in Chapter 5.

 27

3 Making the case for the need for a
solution

In this chapter, we will first examine the literature and then present and interpret the

data from Part A of the questionnaire to show that problems exist in software

maintenance that justify a new solution.

3.1 Evidence from the literature

In long-running software projects, the majority of labour is expended in the

maintenance phase. The amount of resources spent on maintenance by software

organisations varies, but past estimates have ranged anywhere from 48 percent

(Lientz and Swanson, 1980, p. 9), to 51 percent (Fjeldstad and Hamlen, 1979, p. 14),

to approximately 60 to 70 percent (Pressman, 2010, p. 763; Yip et al., 1994, p. 71;

Boehm, 1976, p. 1236).4

One of the most time-consuming and difficult aspects of software maintenance is

program comprehension (LaToza et al., 2006, p. 496) – that is, reading and tracing

through source code to understand its function and behaviour and deducing the

underlying intention and rationale. LaToza et al. state that “understanding the

rationale behind code is the most serious problem developers face,” with 82 percent

of survey respondents agreeing that “it takes a lot of effort to understand why the

code is implemented the way it is” (ibid., p. 499). Maintenance developers may

spend anywhere from 23 to 33 percent (Fjeldstad and Hamlen, 1979, p. 20) to as high

as “50 to 90 percent” (Standish, 1984) of their time on reading and understanding

source code.

Specifications and other forms of documents are useful but are not always available,

accurate, complete, or current. Sousa and Moreira (1998, p. 269) identify missing

documentation and insufficient time for keeping documentation current as two of the

primary causes of software maintenance difficulties. Poor-quality documentation

4 It is recognised that some of sources cited in this section are quite old and may no longer be entirely
accurate in modern software development environments, but are included for completeness in cases
where more recent statistics could not be found.

 28

contributes to developers’ dissatisfaction with maintenance work (Kajko-Mattson,

2005, p. 31). Because of insufficient or poor-quality documentation, source code and

comments are the preferred artefacts studied by developers owing to their relevancy

(LaToza et al., 2006, p. 499); one study found that developers spent approximately

four times as long studying source code as they did reading any corresponding

documentation (Fjeldstad and Hamlen, 1979, p. 20).

These figures indicate that software maintenance is costly, that a major portion of

software maintenance effort is spent on program comprehension, and that much

program comprehension effort involves reading and tracing source code because

other potentially useful sources of documentation are insufficient or irrelevant.

Seeking a new solution to improve the way developers deal with documentation is

worthwhile, as this could reduce time spent on program comprehension and thus

reduce the total resources spent on software maintenance.

3.2 Evidence from the survey of practitioners

Part A of the questionnaire asked participants about their experiences and difficulties

with software maintenance. The full questionnaire is reproduced in Appendix E.

A total of 38 legitimate responses were received. Care must be taken when drawing

conclusions from such a small sample (discussed further in Chapter 9).

The survey contains multiple-choice and open-ended free-text questions, numbered

Q01 to Q78. The majority of questions solicit opinions and responses using a seven-

point Likert scale (see Table 2).

Table 2: Seven-point Likert scale

1 2 3 4 5 6 7
Strongly
disagree

Disagree Slightly
disagree

Neutral Slightly
agree

Agree Strongly
agree

 29

3.2.1 Characteristics of respondents

Figure 1 shows the geographic distribution of respondents.

Figure 1: Geographic distribution of survey respondents (data obtained from reverse IP lookup)

On average, respondents report having 13.2 years of software development

experience (question Q64); see Figure 2.

Figure 2: Years of software development experience reported by survey respondents

All respondents reported some software maintenance activity as part of their job

duties (question Q63). On average, respondents spend 46% of their work hours on

maintenance development activities such as reading or modifying existing code; see

Figure 3.

 30

Figure 3: Reported percentage of developers’ time spent on software maintenance

Note that other surveys have attempted to measure the total costs expended by

organisations on software maintenance rather than the time spent by individual

developers. Yip et al. (1994), for instance, found that maintenance consumes 66% of

the total life cycle cost.

3.2.2 Survey results and interpretation

Project characteristics

13.2% of respondents report working on new development projects; the remainder

work on existing systems of varying ages, as shown in Figure 4 (question Q01).

Figure 4: Age of systems that respondents primarily work on

51.3% indicate that the systems they work on use modern technologies and

techniques, while 27.0% disagree (Q06). 48.6% describe their systems as object-

oriented (Q07). 60.5% report working on “large” systems (Q02), and 71.1% consider

the application domain to be complex and specialized (Q04).

 31

36.8% report working in projects using formal, structured approaches with strict

processes (Q11), while 47.3% report using agile approaches (Q12).

Perceived quality of systems and source code

42.2% consider their systems to have a well-designed architecture (Q09), but 72.9%

feel the architecture has decayed over time (Q10). 62.8% report maintaining code

written by developers who have long left the organisation (Q56).

40.5% consider the source code in their projects to be of good quality (though no

respondents “strongly agree” with that statement); 37.8% disagree (Q08). 47.2% are

dissatisfied with the defect rate in their projects (Q61), and 70.4% report that quality

issues have led to deadline or budget overruns in their projects (Q62).

Use of documentation in projects

31.6% report that formal documentation plays a major role in their projects, while

55.2% disagree with that assessment (Q13). However, somewhat contradictory is the

fact that 55.6% report regularly referring to requirements specifications (Q14) and

59.5% report referring to functional specifications (Q16).

Table 3 lists documentation artefacts that participants report using most frequently.

Table 3: Documentation artefacts most frequently used by survey respondents

Documentation artefact type Reading Writing/

updating
Combined score

(sum of
percentages)

Comments in code 78.4% 91.7% 170.1
Bug/defect reports 83.8% 83.8% 167.6
Test cases and test data 54.0% 75.7% 129.7
Informal documentation such as
wiki pages

62.2% 64.9% 127.1

Functional specifications 59.5% 41.7% 101.2
Requirements specifications 55.6% 36.1% 91.7
Architectural design
documentation

37.8% 52.8% 90.6

 32

That source code and comments rate so highly as a useful form of documentation

confirms the findings of surveys by de Souza et al. (2005, p. 72) and Sousa and

Moreira (1998, p. 269). It is interesting to note that 91.7% of respondents claim to

write or update comments, but only 78.4% report reading comments.

Table 4 lists the least frequently used documentation artefacts.

Table 4: Documentation artefacts least frequently used by survey respondents

Documentation artefact type Reading Writing/

updating
Combined score

(sum of
percentages)

User story cards 13.5% 19.4% 32.9
Data dictionaries 24.3% 19.4% 43.7
UML diagrams 19.4% 30.6% 50.0

It should be noted that an observational study found that developers actually referred

to documents even less frequently than they reported in questionnaires (Lethbridge et

al., 2003, p. 38). Also, the current survey unfortunately neglected to ask about

communication with other developers; LaToza et al. (2005, p. 495) identify face-to-

face and e-mail communication as primary information sources when questions arise.

38.9% report regularly using a code-level documentation system such as Javadoc or

Doxygen (Q38).

72.2% agree that comments appear “frequently” in their systems’ source code (Q39),

while 27.8% report the opposite. 64.0% report that comments tend to accurately

match the corresponding source code (Q40). 44.5% feel that the comments are often

out-of-date (Q41). 69.4% find that the comments are not written consistently across

the source code (Q43). 47.2% expressed dissatisfaction with the quality of comments

(Q44), but another 38.9% found the general quality of comments to be high.

When asked whether “the existing comments in the source code [are] very helpful in

understanding what the code does and how it does it”, 52.7% agreed and 27.9%

disagreed (Q42).

 33

Personal opinions on comments

As Table 5 shows, most respondents disagreed with general statements that were

dismissive of the use of comments in source code, though a substantial minority

consistently agreed with the statements.

Table 5: Respondents generally disagreed with statements critical of commenting

Question
no.

Negatively-formulated
prompt

Mean
response (1 =
strongly
disagree; 4 =
neutral; 7 =
strongly
agree)

Percentage
of
“disagree”
responses
(1, 2, or 3)

Percentage
of “agree”
responses
(5, 6, or 7)

Q45 “Program comments are
a form of heavy
documentation which
violate agile
principles.”

2.69 72.2% 19.5%

Q46 “If code is written
properly, it is self-
documenting and
doesn’t need any
comments.”

3.22 63.9% 27.8%

Q47 “Documenting or
commenting code is a
waste of time because
the documentation and
code will drift out of
sync as the code is
changed.”

2.39 80.5% 14.0%

Q49 “I find that comments
get in my way.”

2.64 66.6% 19.5%

Positive statements about comments tended to garner strong agreement, as shown in

Table 6.

 34

Table 6: Positively-phrased statements about comments tended to garner strong agreement

Question
no.

Positively-
formulated prompt

Mean
response (1 =
strongly
disagree; 4 =
neutral; 7 =
strongly
agree)

Percentage
of “disagree”
responses
(1, 2, or 3)

Percentage
of “agree”
responses
(5, 6, or 7)

Q50 “Having better
comments and
documentation in the
existing code would
make my job easier.”

5.36 11.2% 75.0%

Q53 “I find comments at
the top of classes or
files are useful.”

5.17 17.1% 77.1%

Q54 “I find comments
within methods or
functions useful.”

5.37 11.4% 82.8%

Q55 “I find comments
within methods or
functions useful.”

5.06 17.2% 74.3%

The most useful types of comments are those describing methods/functions, followed

by comments describing classes or files, and followed lastly by “in-line” comments

within methods (Q53-Q55).

Self-evaluation of commenting habits

68.5% of respondents considered themselves diligent about writing comments (Q51),

and 48.5% considered themselves more diligent than their peers or colleagues in

consistently documenting their code (Q52), suggesting that some respondents are

somewhat dissatisfied with the documentation habits of team members. 40.0% say

they would like to document their code better but are constrained by deadline

pressure; 42.9% disagree with this statement (Q48)5.

5 This is a poorly worded question: it presumes that deadline pressure is the only reason preventing
developers from documenting their code better.

 35

Reported difficulties in program comprehension and maintenance

75.1% of respondents reported sometimes having difficulty understanding what the

code does or how it works (Q57), and 77.8% reported difficulties in gaining a “big

picture” understanding of the system from reading source code (Q58). These figures

match the results of another survey (LaToza et al., 2006, p. 499) which found that

82% agreed that “it takes a lot of effort to understand why the code is implemented

the way it is”.

61.1% agreed with the statement “I spend more time reading and debugging code

than I feel I should have to”, while 27.8% disagreed (Q60).

3.2.3 Hypothesis testing

To gain more insight into developers’ preferences and habits, hypothesis testing was

conducted to determine whether evidence could be found to support several

suspected relationships. This analysis is presented in Table 7. For this analysis,

indices – aggregates of scores from multiple related questions (Weisberg et al., 1996,

p. 210) – were constructed, and these are explained in Appendix I, together with the

statistical testing procedure.

For these hypothesis tests, a significance level (alpha) of 0.10 is used. In the social

sciences, 0.05 is generally accepted, and 0.10 is tolerable in cases of limited

responses (Weisberg et al., 1996, p. 186). This level indicates acceptance of a ten-

percent chance that a true null hypothesis will be incorrectly rejected (a Type I error).

 36

Table 7: Hypotheses about respondents’ preferences and practices relating to commenting

No. Hypothesis Represented

in the data by
(see
Appendix I)

Evidence (see Appendix
I)

Interpretation

H1 Those respondents
who generally
express support for
commenting and
documentation will
be more likely to
report writing and
updating comments

Association
between index
IND01 and
question Q51

Pearson chi-square test:
p = 0.0839 < 0.10 (OK)

Fisher’s exact test:
p = 2.5x10-16 < 0.10 (OK)

Kendall’s Tau-b:
p = 0.0025 < 0.10 (OK)

 Tau-b = 0.40

Spearman’s correlation
coefficient:
p = 0.0014 < 0.10 (OK)

 r = 0.50

A statistically significant
association of 0.40 (using
Kendall’s Tau-b) or 0.50
(using Spearman’s
correlation coefficient)
exists.

H2 Those with more
reported experience
will be more likely
to express support
for commenting and
documentation

Association
between
question Q64
and index
IND01

Pearson chi-square test:
p = 0.44 > 0.10 (NOK)

Fisher’s exact test:
p = 4.7x10-26 < 0.10 (OK)

Kendall’s Tau-b:
p = 0.79 > 0.10 (NOK)

Spearman’s correlation
coefficient:
p = 0.74 > 0.10 (NOK)

The evidence does not
support this hypothesis.

H3 Those who express
higher job
frustration will be
more likely to
express support for
commenting and
documentation

Association
between index
IND03 and
index IND01

Pearson chi-square test:
p = 0.46 > 0.10 (NOK)

Fisher’s exact test:
p = 4.1x10-28 < 0.10 (OK)

Kendall’s Tau-b:
p = 0.27 > 0.10 (NOK)

Spearman’s correlation
coefficient:
p = 0.30 > 0.10 (NOK)

The evidence does not
support this hypothesis.

3.2.4 Concluding interpretation

The survey reached a fairly wide spectrum of respondents in terms of experience

levels, geographical location, and focus on maintenance versus new development.

Most respondents reported some difficulties with program comprehension and

maintenance in their current projects; for example, 75.1% reported sometimes having

difficulty understanding existing code. The average responses to some of the

 37

questions suggest a mild level of frustration with the tasks and problems involved

with software maintenance activities.

In general, respondents find comments valuable: comments were found to be the

most frequently used type of software documentation in respondents’ systems,

despite the fact that many respondents described the comments as often being out-of-

date, inconsistent, or of poor quality. 68.5% of participants consider themselves

“diligent” in writing comments, and 75.0% indicated that having better comments

would make their jobs easier. At the same time, there appears to be a fairly consistent

group of about 15 to 20 percent of the respondents who find commenting of little

value.

Developers who experience difficulties and frustration, and who are diligent about

writing comments, would likely be willing to consider an approach or tool that would

help them to write and maintain better software documentation. Efforts to seek some

new form of solution can thus be justified on the basis that (1) there is a problem, and

(2) there exists a community of people who would likely be receptive to some

solution that would help resolve that problem.

Having argued that a solution can be justified, we have addressed Part 1 of the

research question. In the next chapter, we will determine what particular category of

solution is most suitable for investigation.

 38

 39

4 Making the case for a specific
category of solution

We have argued that explicitly recording design intention and rationale information

during development would ease later program comprehension and theoretically

reduce the time and expense required for software maintenance.

The general idea of capturing intention and rationale information needs to be

concretised and systematised into some structure (e.g., a formal approach, a tool, a

language, a product, or some combination of these or others) to be considered a

“solution”. In order to formulate requirements for an “ideal” solution, we need to

narrow the scope to a specific category of solution.

If we consider efforts to improve the efficiency of software maintenance in general,

we might consider two broad classes of solutions:

1. General managerial policies intended to influence macroscopic variables

such as system size, quality, staff workload, and morale. Examples include

managing demands for enhancements (Lientz and Swanson, 1980, p. 9);

employing skilled, experienced developers in the maintenance effort;

instituting peer-review processes (Fagan, 1976), etc.

2. Targeted solutions intended to address a specific problem at the microscopic

level (e.g., at the level of source code).

General managerial policies do have an impact on costs, but the effect comes about

from restricting coarse factors in order to reduce the general workload rather than

leveraging any particular insight into deeper causative factors. For example, keeping

the size of the system small reduces maintenance costs because, all other things

being equal, smaller systems are less complex and thus easier to maintain. But once

the features or change requests have been reduced to the minimum, there are no

further opportunities for improvement along these lines. To achieve further

reductions in maintenance effort, we must explore solutions specifically designed on

 40

the basis of insight into the fundamental causative issues of software maintenance

problems and informed by an understanding of software structure and processes6.

Considering “targeted” solutions addressing specific issues, we may again find two

categories:

1. Approaches, i.e., primarily people-driven processes

2. Tools, i.e., primarily technology-based solutions

Effective people-driven processes can have a definite impact on software

maintenance costs. The effectiveness depends greatly upon the skills of the

developers carrying out the process, however, and processes are often rarely

followed unless enforced by a tool.

A tool which supports developers in their work offers more potential for greater

impact; we might be able to fundamentally change the way developers do their work.

(Of course, a tool is best used together with an effective process.)

Tools relevant to software maintenance tasks are classifiable into two further groups:

1. Tools and techniques that aid the reading and interpretation of source code by

supporting the visualisation, navigation, and reverse-engineering of existing

programs. Examples of such tools include Rigi (Müller et al., 1994), CARE

(Linos et al., 1994), and Imagix 4D (Imagix Corporation, 2010). Let us call

these interpretative approaches.

2. Tools and techniques that aid in the structuring of artefacts and the recording

of information (intentions and rationale) during construction and maintenance

phases in such a way as to reduce the need to reverse-engineer the system

later. Let us call these constructive approaches.

Naturally, the two aspects are linked – that which is written is meant to be read – and

a solution may involve both constructive and interpretative aspects. Most current

6 Of course, a combination of both general organisational policies and some more specific solution
will give the best results.

 41

approaches, however, deal with only one side of the equation; visualisation tools for

program comprehension fit into the interpretative category, while Literate

Programming tools (Knuth, 1984) fit into the constructive category.

For systems that have already been built, only interpretative approaches can be

practically applied, though the findings of reverse-engineering activities could be

recorded for future use using constructive approaches.

For new systems being built now, and which will need to be maintained in the future,

judicious use of effective constructive approaches could make systems more

understandable and maintainable, reducing the need for interpretative-type solutions

later, and potentially leading to long-term cost savings.

A “constructive” approach thus appears to be the best way to attack the fundamental

problem, so this dissertation will focus on identifying or designing a constructive

solution. In the next chapter, we will formulate requirements for a solution of this

type.

 42

 43

5 Formulating requirements for a
solution

This chapter surveys the literature on program comprehension and evaluates past

attempts at solutions. Throughout the discussion, requirements will be collected for

an “ideal” solution of the constructive type defined in the previous chapter.

Requirements are presented in tables as they are identified. At the end of the chapter,

the requirements will be summarised and categorised, and it will be determined

whether any past attempts at solutions meet the requirements sufficiently.

5.1 Exploring program comprehension

Program comprehension refers to the task of actively reading software artefacts

(primarily source code) in order to form an understanding of the system as a whole,

or to identify the locations in the system that must be modified in order to correct a

defect or implement a change request (Corbi, 1989, p. 300). Many developers

distrust external documentation (van Vliet, 2008, p. 474) as it often no longer

matches the implementation; 68 percent of developers feel that “documentation is

always outdated” (Forward and Lethbridge, 2002, p. 29).

Table 8: Requirement R1

Requirement No. Description
R1 The solution shall ensure that documentation elements can

be tightly linked to, or embedded within, the source code
(as developers tend to prefer and trust the source code
over external documentation as an information source).

Program comprehension involves idea processing: developers “[move] from a

chaotic collection of unrelated ideas to an integrated, orderly interpretation of the

ideas and their interconnections” (Halasz et al., 1987, p. 45). Developers may

employ a systematic approach to gain a global understanding of the system, or an as-

needed approach, investigating only parts of the system related to the task at hand

(Storey et al., 1997, p. 19).

 44

Developers need to understand data and data structures, algorithms, and control flow

(Pressman, 2010, p. 773; Pfleeger, 1998, p. 267), and in object-oriented systems,

class hierarchies and interactions. Developers depend on beacons in the code –

identifier names of variables, methods, classes, modules, etc., as well as idioms,

patterns, and comments – for clues in forming an accurate mental model (Brooks,

1982, p. 128; Storey et al., 1997, p. 18). The clarity and descriptiveness of identifier

names has a particularly significant impact on the readability and understandability

of programs (Butler et al., 2010).

Several cognitive models of program understanding have been proposed: the top-

down, the bottom-up, and opportunistic models.

5.1.1 Top-down model

Top-down models (Brooks, 1982 and 1983) suggest that developers first attempt to

grasp high-level structural aspects of a program, and then systematically “[work]

towards understanding the low-level details such as data types, control and data

flows and algorithmic patterns in a top-down fashion” (Grubb and Takang, 2003, p.

111). Beacons provide clues for formulating, confirming, and refining hypotheses

(ibid., Brooks, 1982, p. 128; Storey et al., 1997, p. 18).

Upon reaching a “complete” understanding of a program, a developer will have

formed in his or her mind “a hierarchical structure with the primary hypothesis as the

top, subsidiary hypotheses below, and each segment of program bound to a

subsidiary hypothesis, with no unbound parts of the program” (Brooks, 1982, p.

128).

Table 9: Requirement R2

Requirement No. Description
R2 A developer attempting to understand an existing program

using a top-down approach should be able to use the
solution to record his/her understanding as a hierarchical
(or otherwise interlinked) structure of textual descriptions
of program elements.

 45

5.1.2 Bottom-up model

Bottom-up models propose that developers identify groupings of statements in code,

and “chunk” them together into higher-level abstractions, repeatedly aggregating

them until a satisfactory understanding of the system is reached (Storey et al., 1997,

p. 18; Grubb and Takang, 2003, p. 113). The psychological process of “chunking”

was first described by Miller (1956).

Table 10: Requirement R3

Requirement No. Description
R3 The solution shall allow a developer to associate a

description with a section of code, giving an abstract
interpretation of that section of code for use in a written
representation of a bottom-up reconstruction of the
program’s structure.

5.1.3 Opportunistic model

Opportunistic models suggest that developers exploit both bottom-up and top-down

strategies, making use of cues as they become available (Letovsky, 1986, p. 69;

Grubb and Takang, 2003, p. 115).

5.2 General software engineering advances that
have improved maintenance

Maintenance has been improved by the adoption of general advances in software

development techniques such as structured programming, object-oriented

programming, design patterns, and frameworks.

Table 11: Requirement R4

Requirement No. Description
R4 The solution shall be suitable for use with object-oriented

systems.

 46

5.3 Evaluating past “constructive” solutions

This section examines existing “constructive” approaches for documenting software

systems. We differentiate between internal documentation schemes involving

comments written directly within source code, and external documentation schemes

involving documents separate from source code.

5.3.1 Approaches focusing on internal documentation

Comments in program code

Comments – remarks written within source code files – are a facility provided in all

high-level programming languages dating from FORTRAN (IBM Corporation, 1956,

p. 8) and even Zuse’s 1945 Plankalkül (Bauer, 1972, p. 681).

Comments can be used to record intentions and rationale. McConnell (2004) argues

that the purpose of comments is exactly that: “Good comments don’t repeat the code

or explain it. They clarify its intent. Comments should explain, at a higher level of

abstraction than the code, what you’re trying to do” (p. 638).

Storing explanatory text in comments within the source code, as opposed to in

external documentation, increases its visibility: it makes it likelier that it will be

found and read, because it is in close proximity to the corresponding code. Rüping

(2003, p. 126) writes: “Documentation of the code… is best done through source

code comments.” However, comments alone are typically insufficient for capturing

and explaining higher-level material such as requirements, overviews, and

architectural designs (ibid., p. 127).

Simonyi (2005) argues that “programming languages … were not designed with the

express purpose of retaining the intentions... In fact, the best means most languages

offer for preserving intentions is the trivial ‘comment’ facility with its well-known

problems.” This is a key insight, and raises the question: might developers give more

consideration to recording intentions and rationale if a programming language

construct other than the traditional comment were available? Some improved form of

 47

commenting construct could potentially even provide opportunities for enforcing the

use of comments, and templating features could help ensure consistency.

Table 12: Requirements R5 to R7

Requirement No. Description
R5 The solution shall include a mechanism to enforce the

presence of comments or other forms of internal
documentation.

R6 The solution shall allow some form of reusable templates
to be defined for comments or other forms of internal
documentation, so that similar comments share a
recognisable form.

R7 The design of the solution shall attempt to increase the
importance and visibility of comments or other forms of
internal documentation through the provision of some
process, mechanism, artefact, or construct.

Explicit documentation of instances of design patterns in code

Design patterns (Gamma et al., 1995) have become a major technique for structuring

object-oriented systems. While instances of patterns (also called pattern

applications) can be identified in UML class diagrams using a dashed ellipse and

connecting line notation (Schauer and Keller, 1998), there still remains no generally

accepted way to explicitly document instances of patterns within code.

Comments can be used to document pattern instances, but this is rarely done.

Prechelt et al. (2002) found that explicit documentation of patterns can aid

comprehensibility; without explicit documentation of pattern instances, readers must

piece out what pattern is being used and which classes and objects play which roles.

Crucially, developers may remain unaware that a particular pattern is in use if they

are unfamiliar with it.

Prechelt et al. (2002) suggest using “Pattern Comment Lines” (PCL) to document

pattern instances by filling out a template in comments attached to each participating

class or object. Torchiano (2002) has exploited Javadoc’s “taglet” functionality to

systematically record roles in pattern instances using Javadoc comments.

Unfortunately, neither scheme has become widespread, and neither scheme offers

any means of enforcement.

 48

Table 13: Requirement R8

Requirement No. Description
R8 The solution shall provide a means by which pattern

instances can be explicitly documented.

Java annotations

Annotations, introduced with Java 5, are a form of user-definable metadata that can

“decorate” classes, methods, variable declarations, and parameters (Sun

Microsystems, 2004). Annotations primarily serve to allow tools to extract metadata

about program elements (ibid.), but annotations can also be used as documentation

for human readers; they can mark program elements as having particular properties7.

Because annotations can be defined with parameters, they could be used as a

structured way of documenting program elements, ensuring that certain fields are

provided. There is no way to enforce the use of annotations, however.

5.3.2 Approaches focusing on external documentation

Object-oriented documentation

Sametinger (1994) identifies similarities between documentation and source code

and recommends applying object-oriented concepts to documentation. Documenting

object-oriented systems with object-oriented documentation tools and techniques

allows specialized documentation sets, suitable for different audiences, to be

generated from a single source, using a scheme modelled after the visibility

modifiers (e.g., public, private, protected) of object-oriented languages.

7 For example, Goetz et al. (2006) suggest applying annotation @ThreadSafe to thread-safe classes
and methods.

 49

Table 14: Requirement R9

Requirement No. Description
R9 The design of the solution shall allow comments or other

documentation elements to be structured in an object-
oriented fashion and to use object-oriented features such
as inheritance where reasonable.

Diagrammatic notation for object-oriented programming

Diagrams such as flowcharts, statecharts, and call graphs are useful aids for

modelling and communicating the designs of new or existing systems. Static and

dynamic aspects of modern object-oriented systems are usually modelled and

communicated using UML (Booch et al., 2005).

As mainstream programming languages use plain-text source code files, UML

diagrams cannot be embedded directly into source code comments. UML diagrams

are thus a form of external documentation, and frequently, diagrams are not

synchronised to match changes to the source code. Model-driven CASE tools

incorporate round-trip engineering, whereby changes in model diagrams are

reflected in the source code and vice versa (ibid., p. 10).

Table 15: Requirements R10 and R11

Requirement No. Description
R10 The solution shall allow the embedding of diagrams in

documentation; if references to external diagrams must be
used, the solution should check the “relational integrity”
of references so that “dead links” do not arise.

R11 The solution shall either aid in keeping code and diagrams
or models in synchronisation, or shall provide alerts when
changes to the code are made that may necessitate the
updating of diagrams or models.

 50

Intent specifications

Intent specifications (Leveson, 2000) are a form of structured external documentation

for specifying safety-critical systems. Intent specification documents follow a

specific format, based on an underlying three-dimensional model of intent,

decomposition, and levels of refinement. Means-end hierarchies present design

rationale at different levels of abstraction and provide traceability to goals and

requirements.

Table 16: Requirement R12

Requirement No. Description
R12 The solution shall allow intention and rationale

information to be represented at different levels of
abstraction.

5.3.3 Approaches blending internal and external
documentation

Literate programming

One of the earliest attempts to encourage and support the explicit documentation of

design intentions in programs is Knuth’s Literate Programming approach (1984). A

literate program consists of a prose document explaining the structure and flow of the

program and the reasoning behind it. Code fragments are then embedded within this

prose document. A tangle tool extracts the code for compilation, while a weave tool

generates a typeset document suitable for printing.

Blocks of code can be summarised with a descriptive textual label using angle

bracket notation (e.g., “<Initialize the data structures>”) and such blocks can be

reused elsewhere in the program by referencing the angle bracket notation (ibid.).

The label essentially summarises the intention behind that block of code. Programs

can thus be broken down into a nested, hierarchical tree of intentions, mirroring the

typical top-down strategy of decomposing problems.

Though the literate programming approach sounds promising, it appears rather

unmanageable for very large systems maintained by multiple developers. The

 51

original WEB literate programming system (Knuth, 1984) and its successors –

Ryman (1993), Knuth and Levy (1994), Ramsey (1994), and Morales-Germán

(1994) – have not gained any widespread adoption in industry.

Table 17: Requirements R13 to R15

Requirement No. Description
R13 The solution shall foster a literate style of programming,

encouraging explanatory text to be closely linked with
source code, ideally within the same document.

R14 The solution shall allow code blocks to be associated with
intention descriptions (i.e., a textual summary of what the
code block is supposed to do), and this shall also apply to
code blocks at any level of nesting.

R15 The solution must be practical for industrial-scale
software projects involving multiple developers.

Javadoc and Checkstyle

Javadoc (Sun Microsystems, 1997) is a documentation system allied with the Java

language. The javadoc tool extracts comments written in a particular syntax from

source code and generates an interlinked set of HTML pages suitable for use as an

API reference.

Pieterse et al. (2004) remark that Javadoc’s widespread adoption shows that “the

resistance of programmers to put enough emphasis on the documentation aspect of

programming is no longer as severe as it was experienced when [Literate

Programming] was first introduced” (p. 6). Forward and Lethbridge’s survey (2002)

found that 51% of respondents found Javadoc and similar tools as “useful” for

creating, editing, and browsing internal documentation. Javadoc’s success suggests

that developers’ programming habits can be changed by tools that bring concrete

benefits (hypertext API references) and which are highly visible (all of the Java APIs

are documented using Javadoc).

Javadoc is primarily intended for generating API documentation; the generated

documentation shows only “public” classes, methods, and variables. Javadoc

comments written for private methods and fields are suppressed in the generated

hypertext documentation.

 52

Javadoc comments are entirely voluntary; programs will compile in the complete

absence of Javadoc comments. Tools such as Checkstyle (Checkstyle, n.d.) can be

used to enforce that Javadoc comments are present, but programmers can effectively

bypass the enforcement by entering a “.” for the comment text. While no tool can

parse natural language text to check comments for correctness, it would be desirable

to be able to at least prevent obvious enforcement bypass attempts.

Table 18: Requirements R16 to R18

Requirement No. Description
R16 The solution shall be capable of generating hypertext

documentation similar to Javadoc.
R17 The solution shall support the documentation of both

“public” (exposed API) and “private” (internal
implementation) aspects of a system.

R18 The solution shall attempt to enforce that comments or
internal documentation contain “reasonably sufficient”
contents, to the extent possible by current technology.

Elucidative programming

Elucidative programming (Nørmark, 2000) resembles Literate Programming, but the

documentation text is stored in artefacts separate from code, and bidirectional links

between documentation and code are established. A viewer tool displays code and

matching documentation side-by-side, reducing the need to repeatedly switch

between source code and external documents.

This holds promise if, instead of using a separate viewer tool, the Integrated

Development Environment (IDE) supported the seamless editing and viewing of

code and documentation together, with graphical interlinking. As long as the

documentation is stored separately from source code, however, there is always the

risk of simply neglecting the documentation (e.g., by turning off the documentation

window), and if the code is later migrated to another tool, likely only the source code

would be transferred.

 53

Table 19: Requirement R19

Requirement No. Description
R19 The solution shall allow comments or other forms of

documentation to be stored either 1. within source code
files, or 2. externally, with a robust interlinking system.

5.3.4 Radically new programming systems

Intentional Programming

Intentional Programming (IP) is a programming paradigm with innovations that

promise to aid program comprehension (Simonyi, 1995; Simonyi et al., 1998;

Simonyi et al., 2008). IP separates structure from presentation by storing source code

in databases rather than text files, allowing the IDE to “project” programs into

various notations and syntaxes. A domain workbench tool allows the construction of

domain models and domain-specific languages, theoretically enabling domain

concepts to be manipulated at higher levels of abstraction than traditional source

code.

“Intentions” in IP appear to be abstract and general program structuring constructs;

the literature is vague but IP’s intention constructs do not appear to include a textual

description of the programmer’s intention. Early demonstrations of IP (Microsoft

Research, n.d.) are intriguing, but as a proprietary technology under development,

information is sparse and no programming environments are yet available for

evaluation.

Intent-First Design

Perry and Grisham (2006), asserting that the “core problem” of software

development is “how to capture, express, and utilize intent” (ibid.), elucidate a vision

for an IDE for constructing “rationale/intent models” which “represent the architect’s

intent in transforming requirements into system architectures” (ibid.). Unfortunately,

the paper is very abstract and reveals little concrete detail of the proposed IDE or

models.

Perry and Grisham introduce the “Intent-First Design” approach, which, somewhat

 54

analogously to Test-Driven Development, encourages developers to record their

intentions (in a process called rationale reification) before constructing software

artefacts (ibid.).

Table 20: Requirement R20

Requirement No. Description
R20 The solution shall encourage developers to follow a

process of recording their design intentions before writing
code.

5.3.5 Documentation enforcement systems

srcDoc

Shearer and Collard (2007) present srcDoc, a tool that can enforce certain constraints

between Java source code elements and corresponding Javadoc comments, as a

means of enforcing certain types of design decisions and policies. This is one of the

few systems demonstrating a means of enforcing Javadoc comments.

5.4 Exploring “interpretative” tools

Although our focus is on “constructive” tools, we will briefly examine

“interpretative” tools for reverse-engineering existing systems, as an ideal solution

should allow developers to efficiently browse and navigate source code artefacts and

improve and update existing documentation with any findings of their reverse-

engineering activities. Storey et al. (1997) identify common features of such tools;

features relevant to our discussion include:

 55

• Reducing the effect of delocalised plans

Plans are “program fragments that represent stereotypic action sequences in

programming, e.g., a running total loop plan, an item search loop plan”

(Soloway, 1986). Delocalised plans are plans that are fragmented across

multiple software artefacts (Soloway et al., 1988). “Without tool assistance,

reading code belonging to a delocalised plan can be cumbersome as it may

involve frequent switching between files which will quickly lead to a feeling

of disorientation” (Storey et al., 1997, p. 21).

Table 21: Requirement R21

Requirement No. Description
R21 The solution shall aid in the documentation of delocalised

plans.

• Providing abstraction mechanisms

“Facilities should be available to allow the maintainer to create their own

abstractions and label and document them to reflect their meaning.

Abstraction can be supported by selecting lower level objects and aggregating

them into higher level abstractions” (Storey et al., 1997, p. 23).

Table 22: Requirement R22

Requirement No. Description
R22 The solution shall allow maintainers to document their

own abstractions separately from any structures or
abstractions already used in the program.

• Providing directional navigation

Modern IDEs like Eclipse (Eclipse Foundation, n.d.) allow rapid navigation

between code elements using hypertext-style linking. Such support should

also extend to any documentation embedded within or linked to the source

code.

 56

Table 23: Requirement R23

Requirement No. Description
R23 The solution shall provide hypertext navigation between

and within source code and documentation artefacts in the
IDE.

5.5 Requirements derived from the survey

In the free-form questions of the survey, one respondent mentioned the importance of

test-driven development; another suggested that if design information is being

recorded, it should be possible to validate this design before beginning to write code.

Table 24: Requirements R24 and R25

Requirement No. Description
R24 The solution shall be compatible with a test-driven

development approach and shall permit the documentation
of automated tests.

R25 The solution shall allow intention information to be
validated (e.g., by another designer or developer) before
code is written.

5.6 Additional requirements

This section addresses several requirements not easily categorised into any previous

sections.

Improper change control procedures leading to out-of-date
documentation

Ryman (1992, p. 134) defines design entropy as “a conceptual measure of the

discrepancy between the design specification of a software system and its code”. The

design entropy of a system increases if proper change control procedures are not

followed, i.e., the design documentation is not updated after an urgent “quick-fix”

change to the code.

 57

Table 25: Requirement R26

Requirement No. Description
R26 The solution shall encourage the updating of design

documentation when code is changed, or, if possible,
structure the process so that the design documentation
must be updated first.

Heterogeneous technology landscapes

Most enterprise systems involve multiple programming languages and technologies.

Table 26: Requirement R27

Requirement No. Description
R27 The solution shall ideally support projects consisting of

artefacts written in multiple languages.

Limitations of rational design processes

Parnas and Clements (1986) argue that completely rational design processes, such as

the idealised “waterfall model” in which systems are completely specified before

they are built, are inherently unrealistic for large, complex systems: “We believe that

no system has ever been developed in that way, and probably none ever will” (ibid.).

However, it is beneficial to maintainers if “we fake the process by producing the

documents that would have produced if we had done things the ideal way. We

attempt to produce the documents in the order that we have described… We do not

show the way things actually happened; we show the way we wish they had

happened and the way things are” (ibid.). Design documents are a critical deliverable

of the project, and should be produced for use by future maintainers, even if the

system was actually built without those documents.

Table 27: Requirement R28

Requirement No. Description
R28 The solution shall encourage the recording of designs and

design decisions before code is written (the ideal case),
but shall also allow design information to be added to as-
yet undocumented code.

 58

5.7 Summarisation and categorisation of
requirements

Table 29 summarises the 28 requirements collected in this chapter, grouped into

categories. The table shows the degree to which some of the more promising

approaches meet the requirements. Table 28 provides a legend of the codes used in

Table 29.

Table 28: Legend of degree-of-fit codes used in Table 29

Code Degree of fit

Y Yes, solution meets requirement
P Partially meets requirement
C Solution could be used to meet requirements, but would require unusual

discipline as it is not traditionally used in this manner
N No, does not meet requirement
? Unknown whether requirement can be met (due to lack of information about

the solution)

 59

Table 29: Summary and categorisation of requirements with degree of fit for potential solutions

Requirements Existing approaches
Category No. Description

Tr
ad

iti
on

al
 c

om
m

en
ts

Pa
tte

rn
 C

om
m

en
t L

in
es

Li
te

ra
te

 p
ro

gr
am

m
in

g

(W
EB

)

Ja
va

do
c

+
C

he
ck

st
yl

e

In
te

nt
io

na
l P

ro
gr

am
m

in
g

R1 The solution shall ensure that documentation
elements can be tightly linked to, or embedded
within, the source code (as developers tend to
prefer and trust the source code over external
documentation as an information source).

Y Y Y Y Y Relationship to
documentation
other software
artefacts

R3 The solution shall allow a developer to associate
a description with a section of code, giving an
abstract interpretation of that section of code for
use in a written representation of a bottom-up
reconstruction of the program’s structure.

Y Y Y Y Y

R2 A developer attempting to understand an
existing program using a top-down approach
should be able to use the solution to record
his/her understanding as a hierarchical (or
otherwise interlinked) structure of textual
descriptions of program elements.

C C P C ?

R6 The solution shall allow some form of reusable
templates to be defined for comments or other
forms of internal documentation, so that similar
comments share a recognisable form.

N N N N N

R9 The design of the solution shall allow comments
or other documentation elements to be
structured in an object-oriented fashion and to
use object-oriented features such as inheritance
where reasonable.

N N N N N

R10 The solution shall allow the embedding of
diagrams in documentation; if references to
external diagrams must be used, the solution
should check the “relational integrity” of
references so that “dead links” do not arise.

C C C C Y

R12 The solution shall allow intention and rationale
information to be represented at different levels
of abstraction.

C C Y C ?

R13 The solution shall foster a literate style of
programming, encouraging explanatory text to
be closely linked with source code, ideally
within the same document.

C C Y P ?

R14 The solution shall allow code blocks to be
associated with intention descriptions (i.e., a
textual summary of what the code block is
supposed to do), and this shall also apply to
code blocks at any level of nesting.

C C Y C Y

R17 The solution shall support the documentation of
both “public” (exposed API) and “private”
(internal implementation) aspects of a system.

C C C Y ?

Form and
structure of
documentation

R19 The solution shall allow comments or other
forms of documentation to be stored either 1.

Y Y Y Y Y

 60

Requirements Existing approaches
Category No. Description

Tr
ad

iti
on

al
 c

om
m

en
ts

Pa
tte

rn
 C

om
m

en
t L

in
es

Li
te

ra
te

 p
ro

gr
am

m
in

g

(W
EB

)

Ja
va

do
c

+
C

he
ck

st
yl

e

In
te

nt
io

na
l P

ro
gr

am
m

in
g

 within source code files, or 2. externally, with a
robust interlinking system.

R4 The solution shall be suitable for use with
object-oriented systems.

Y Y Y Y Y

R15 The solution must be practical for industrial-
scale software projects involving multiple
developers.

Y Y N Y Y

Applicability
domain of
solution

R27 The solution shall ideally support projects
consisting of artefacts written in multiple
languages.

Y C ? N ?

R8 The solution shall provide a means by which
pattern instances can be explicitly documented.

C Y C C ?

R21 The solution shall aid in the documentation of
delocalised plans.

C P Y C ?

R22 The solution shall allow maintainers to
document their own abstractions separately
from any structures or abstractions already used
in the program.

C C C C ?

What can be
documented

R24 The solution shall be compatible with a test-
driven development approach and shall permit
the documentation of automated tests.

Y Y ? Y Y

R5 The solution shall include a mechanism to
enforce the presence of comments or other
forms of internal documentation.

N N N P N Enforcement

R18 The solution shall attempt to enforce that
comments or internal documentation contain
“reasonably sufficient” contents, to the extent
possible by current technology.

N N N N N

R20 The solution shall encourage developers to
follow a process of recording their design
intentions before writing code.

N N Y N ?

R28 The solution shall encourage the recording of
designs and design decisions before code is
written (the ideal case), but shall also allow
design information to be added to as-yet
undocumented code.

Y Y Y Y Y

Process

R25 The solution shall allow intention information to
be validated (e.g., by another designer or
developer) before code is written.

C C C C C

Changing
mindset

R7 The design of the solution shall attempt to
increase the importance and visibility of
comments or other forms of internal
documentation through the provision of some
process, mechanism, artefact, or construct.

N Y Y Y ?

R11 The solution shall either aid in keeping code and
diagrams or models in synchronisation, or shall
provide alerts when changes to the code are
made that may necessitate the updating of
diagrams or models.

N N N N ? Maintaining
quality of
documentation

R26 The solution shall encourage the updating of N N N N N

 61

Requirements Existing approaches
Category No. Description

Tr
ad

iti
on

al
 c

om
m

en
ts

Pa
tte

rn
 C

om
m

en
t L

in
es

Li
te

ra
te

 p
ro

gr
am

m
in

g

(W
EB

)

Ja
va

do
c

+
C

he
ck

st
yl

e

In
te

nt
io

na
l P

ro
gr

am
m

in
g

 design documentation when code is changed, or,
if possible, structure the process so that the
design documentation must be updated first.

R16 The solution shall be capable of generating
hypertext documentation similar to Javadoc.

N P Y Y ? Aids to reading
documentation

R23 The solution shall provide hypertext navigation
between and within source code and
documentation artefacts in the IDE.

N N N N N

This collection of requirements answers Part 2 of the research question.

Table 29 shows that none of the past attempts at solutions fulfil any substantial

number of requirements. Thus it is worthwhile attempting to design a new solution

that will meet as many of the requirements as possible, and the next chapter will

address the methods involved in the task of designing and evaluating a new solution.

 62

 63

6 Research methods for designing
and evaluating a solution

Having generated requirements for an “ideal” solution, and having determined that

no past attempts at solutions are entirely suitable, a design for a solution that meets

as many requirements as possible shall be devised. The solution should then be

critically evaluated. This chapter explains the methods necessary to conduct this

work.

6.1 Conceptualising, designing and elucidating a
proposed solution

On the basis of the identified requirements, an idea for a solution will be generated,

which will be developed into a detailed design. Design is a creative activity not

easily formalised into a strict procedure, but involves inspiration (generating a spark

of an idea) followed by iterative brainstorming, exploration, experimentation,

problem solving and refinement while conceptualising, specifying, and constructing

the product (Aspelund, 2010).

The idea and solution must be clearly communicated. The author’s proposed solution

will be outlined in Chapter 7 and elaborated in detail in the appendices.

The author’s proposed solution is based on the idea of adding extensions to an

existing programming language for the purpose of recording intention and rationale.

The language will be described informally through a tutorial-style explanation. A

more formal specification of the language will take the form of a grammar written

for the ANTLR compiler construction tool (Parr, n.d.), employing the Extended

Backus-Naur Form, combined with descriptions of contextual constraint rules and

the behaviour of a tool to process the language. (The language extensions are purely

documentation elements with no influence on program execution, so there are no

“semantics” to define in the sense of run-time behaviour.)

Fundamental programming language design and implementation concepts are given

by Watt and Brown (2000); guidelines for effective language design and

 64

specification are given by Schünemann (2001) and Bjork (2009). Gosling et al.

(2005) serves as an example of a well-written specification.

6.2 Implementing a prototype of the designed
solution

To investigate the solution’s feasibility, a limited prototype of a processing tool for

the language will be constructed. Chapter 7 will explain the levels of support

possible for the language; a complete IDE is the ideal, but constructing such a tool is

unrealistic within the project time limits. As a compromise, a precompiler that

translates programs written in the language into plain Java source code files will be

constructed instead. This is a still a major task and scope limitations are essential.

The scope is defined in Appendix C.

To speed the implementation, the compiler construction tools JavaCC (JavaCC, n.d.)

and ANTLR (Parr, n.d.) were evaluated. ANTLR was chosen due to superior

documentation (Parr, 2007) and because it has an existing Java grammar (Parr, 2008)

that is relatively understandable and modifiable.

6.3 Constructing a sample project using the
language

A small application project will be constructed using the new language, to

demonstrate the approach, and to act as a test suite for the precompiler.

6.4 Evaluating the proposed solution

Evaluating the solution must involve determining how well it meets the stated

requirements, and addressing Part 3 of the research question, which asks whether the

solution is feasible, practical, and effective.

Some parts of the evaluation can be done by the author, but external evaluation is

also needed.

 65

6.4.1 Evaluation by the author

A critical analysis of the proposed solution will be conducted by the author using

methods enumerated in Table 30.

Table 30: Methods to be used in the author’s own evaluation of the proposed solution

Method
no.

Description Refer to
section(s)

1 Evaluation of the proposed solution against the list of
identified requirements

8.1.1

2 Enumeration and discussion of advantages and
disadvantages

8.1.2, 8.1.5

3 Analysis of the literature for statements for or against
the general approach

8.1.3

4 Comparison of the proposed solution with alternative
solutions

8.1.4

5 Evaluation of the language design against language
evaluation criteria such as those given by Bjork (2009)

8.1.6

6 Reflection on the experience of building the sample
application using the language extensions

8.1.7

7 Consideration of ethical issues related to the proposed
solution

8.1.5 and
Appendix H

Additionally, the prototype precompiler and sample application serve as proofs of

concept of the technical feasibility of the language and approach and practicality for

use, at least in small projects. Note that purely technical evaluations of the

precompiler such as performance measurements would give no insight into the

solution’s practicality or effectiveness and so will be omitted.

6.4.2 Evaluation involving outside evaluators

To address whether the solution is truly effective, it would be ideal to determine

whether the solution can be shown to reduce long-term maintenance costs, or at least

whether the solution can improve program comprehension.

A long-term case study or “quasi-experiment” involving multiple software projects

could be run, comparing projects using the proposed solution against projects that do

not. This is impractical as an effective study would have to span several years, and

 66

while useful qualitative data might be obtained, no definite conclusions could be

drawn due to the vast number of uncontrolled variables and differences between

projects and teams.

A field experiment observing developers working with the solution could provide

insight into the solution’s practicality and impact on program comprehension.

Usability engineering methods such as think-aloud protocols (Holzinger, 2005) could

reveal work practices and thought patterns; examples of such studies are Wallace et

al. (2002) and Chuntao (2009). Unfortunately, this exercise requires a production-

quality implementation of the solution and requires time for developers to learn and

become competent with the language and system. Finding volunteers would be

difficult due to the time commitment needed. Extrapolating conclusions about long-

term benefits from a relatively short investigation may not be reasonable.

Less time commitment from volunteers would be required for a comprehension quiz

experiment like those of Prechelt et al. (2002) and Nurvitahdi et al. (2003).

Participants would be randomly assigned to different groups. One group would

receive a program listing without comments, another would receive the same listing

but documented with a “standard” use of comments, and another would receive the

listing documented using the proposed language extensions. All groups would be

given the same comprehension quiz. If the latter group were to receive (statistically-

significant) higher scores than the other groups, it might be considered as limited

evidence that the solution improves comprehension. The experiment design would be

difficult methodologically: it is impossible to properly control all variables in such

experiments (Parnas, 2003, p. 4), and given enough time, all participants could study

the listings and earn near-perfect scores. Variability of participant skill levels implies

a need for hundreds of subjects (Brooks, 1980), and comprehension quiz scores,

especially based on small programs, will not necessarily correspond to reduced

maintenance costs (ibid.).

Interviews and questionnaire surveys of practicing software developers are feasible

“compromise” approaches. The solution would be explained to participants, who

would then provide feedback on its perceived effectiveness. Unfortunately, these

approaches have a critical limitation: by merely soliciting opinions, they provide

 67

little “direct” empirical evidence towards the underlying question of whether the

solution truly improves comprehension or reduces long-term costs. Root and Draper

(1983) warn that “asking users about the value of some proposed change without

giving them experience of it is an essentially useless guide to their satisfaction with it

in practice” (p. 86). Nevertheless, these techniques can still provide useful qualitative

and quantitative data for analysis, and are feasible within the time limits.

As the questionnaire was chosen in Chapter 2, it was decided to add a Part B to the

questionnaire to solicit evaluation of the solution8.

Chapters 7 and 8 employ the research methods chosen in this chapter to design and

evaluate a new solution.

8 Please refer back to Chapter 2 for references to the literature on survey design and analysis.

 68

 69

7 Proposing, designing, and building
a solution

This chapter introduces a solution intended to meet most of the requirements

identified in Chapter 5.

7.1 The structure of the proposed solution

The proposed solution is a scheme consisting of a process and a tool/technology.

The process is an approach called Design Intention Driven Programming (DIDP),

which encourages developers to record their intentions before writing code, and

attempts to enforce this by means of the tool/technology.

The tool/technology is a set of language extensions that can be added to existing

programming languages. The extensions are language constructs specially designed

for recording intention information. A specialised compiler enforces the use of these

constructs in program code by flagging absences as compiler errors. Adding the

extensions to Java has produced a language tentatively called Java with Intentions

(JWI).

A brief introduction to the scheme, referred to as DIDP/JWI for brevity, is presented

in the following section9. Appendix B gives a more exhaustive description, detailing

all features and addressing typical questions and objections.

9 Due to strict word count limits, only a summary of the scheme can be explained in the body of the
dissertation.

 70

7.2 Introducing Design Intention Driven
Programming and Java with Intentions

In the Design Intention Driven Programming (DIDP) approach, when developers

implement a requirement or a feature, they first record their design intentions for the

software component before they write the code for that component. This simply

involves writing a brief description of what the component is planned to do, and how

it will do it. The description may also include rationale – a justification of why one

particular solution was chosen over alternative solutions.

Design intentions are written using specialised programming language constructs

called intention comments. Like traditional comments, intention comments contain

textual descriptions. But unlike a traditional comment, intention comments have a

richer structure modelled after object-oriented classes. Intention comments:

• are named;

• can contain fields for storing text, allowing further structuring of

explanations;

• can contain fields referencing other intention comments, goals, or

requirements, which allows rich graph structures to be formed;

• can contain fields referencing program entities such as classes;

• can be declared abstract, allowing for templating;

• support inheritance using the extends keyword, allowing structured re-use.

A developer will first write an intention comment, and then will write the code to

fulfil the intention. Upon completion, the classes and methods involved are linked to

the intention comment.

In Java with Intentions (JWI), intention comments are declared using the intention

keyword. Figure 5 illustrates the syntax of an intention comment and shows a class

linking to it.

 71

Figure 5: An intention comment and a class linking to it

intention QuizStateIntention {

 description {
 Class QuizState maintains the state of the current quiz, i.e., the current
 session in which all of the flashcards in a flashcard set will be presented
 once. This class is responsible for keeping track of the current flashcard,
 the user's score, and the application's mode (whether a game is in progress
 or is stopped).
 }

 requirementsreference[] satisficesRequirements = {
 EachFlashcardPresentedOncePerQuizSession,
 KeepScore
 };

 intentionreference playsRoleInPattern = FlashcardTrainerMVCPatternInstance;

}

public class QuizState implementsintention FlashcardTrainerMVCPatternInstance,
 QuizStateIntention {
 ...	
}

Enforcing documentation

In JWI projects, all classes must refer to an intention comment; a compiler error will

be raised if a class does not have an appropriate intention describing it. This is an

attempt to enforce the presence of documentation.

Enforcing that descriptions are correct or sufficient is impossible as current

technology cannot interpret and reason about natural-language prose. However, an

imperfect and limited form of sufficiency enforcement can be conducted as follows.

To prevent “empty” or “gibberish” comments, the compiler will calculate a

complexity metric such as the McCabe Cyclomatic Complexity index (van Vliet,

2008, p. 342) for each section of code, and then using another algorithm, it will

calculate a metric that quantifies the “information content” of the descriptive text

associated with that code. If the ratio of the information content metric to the code

complexity metric falls below a threshold, the description is deemed insufficient to

describe the code, and a compiler error is generated.

Documenting design pattern instances

Abstract intention comments can describe general design patterns, as illustrated in

Figure 6.

 72

Figure 6: An abstract intention comment defining a general design pattern

abstract intention ModelViewControllerPattern {

 description {
 The Model-View-Controller pattern structures the user interface
 code into separate components. This separation of concerns helps
 improve understandability and modifiability.

 The model consists of a representation of the application's data.
 The model notifies listeners (typically, one or more view
 components) when the data changes.

 The view component presents the data to the user in the form of
 UI components. Multiple views based on the same model may exist.

 The controller acts upon input from the user and updates the
 model and/or interacts with the view.
 }

 classreference[] modelClasses;
 classreference[] viewClasses;
 classreference controllerClass;

}

Concrete instances of the design pattern can then be documented by extending the

abstract intention comment to form a concrete intention comment for the instance;

fields are filled in with references to the components playing the roles in the pattern,

as shown in Figure 7.

Figure 7: A concrete intention extending the abstract pattern definition to specify a particular

instance of the pattern

intention FlashcardTrainerMVCPatternInstance extends ModelViewControllerPattern {

 description {
 The flashcard trainer user interface is constructed according to the
 Model-View-Controller pattern.
 }

 modelClasses = { QuizState, FlashcardSet };
 viewClasses = { QuizFrame };
 controllerClass = QuizController;

}

Components taking part in the pattern can also link themselves to the intention

comment (see Figure 8), so that new developers stumbling upon one of the

components can follow the links to locate the other components of the pattern (and

developers unaware of the pattern are guided by an explicit description). Prechelt et

al. (2002) found that explicit documentation of pattern instances aids

comprehensibility.

 73

Figure 8: A component of the pattern instance links itself to the intention comment for the

pattern instance

class QuizController implementsintention FlashcardTrainerMVCPatternInstance,
 QuizControllerIntention {
 ...
}

Goals and requirements

Intentions typically follow from requirements, and requirements typically follow

from goals. Goals and requirements can be recorded in JWI projects using keywords

goal and requirement. Figure 9 illustrates requirements recorded using JWI.

Figure 9: Requirements represented in code using JWI

abstract requirement FunctionalRequirement {
 description {
 Functional requirement.
 }
}

abstract requirement NonFunctionalRequirement {
 description {
 Non-functional requirement.
 }
}

requirement ShuffleFlashcards extends FunctionalRequirement {
 description {
 The application shall randomize (shuffle) the flashcards in the
 flashcard set so that the user is not presented with the same sequence
 of cards each time.
 }
}

requirement UseGUI extends NonFunctionalRequirement {
 description {
 The application shall use a graphical user interface.
 }
}

Intention graphs

The set of interlinked goals, requirements, and intentions for a project forms an

intention graph. Representing entire intention graphs graphically is often impractical

due to their size, but subsets can be useful. Figure 10 illustrates an intention graph

subset using a modified UML class diagram notation.

 74

Figure 10: Modified UML class diagram illustrating an intention graph subset (description texts for
goals, intentions, and requirements omitted)

IDE navigability

An ideal DIDP/JWI implementation features an IDE (e.g., Eclipse) supporting syntax

checking for the language extensions and offering rapid navigation between intention

declarations and code by presenting references as hyperlinks. Fast navigation is

important, as Ko et al. (2005) found that 35% of programming time involves

navigating between dependencies and 46% involves inspecting code irrelevant to the

task at hand.

This brief overview does not cover all features of the proposed scheme, nor does it

address common questions and objections. Please refer to Appendix B for a more

comprehensive discussion.

 75

7.3 The prototype precompiler and the Java with
Intentions language specification

Appendix C summarises the scope of the prototype precompiler implementation.

Appendix D explains how to access the prototype and gives a walkthrough of its use.

The Java with Intentions language features are described in detail in Appendix B,

and this serves as an informal language specification.

The ANTLR grammar developed for the prototype precompiler serves as a formal

specification of the language syntax. Instructions for accessing the ANTLR grammar

are provided in Appendix D. In addition to the syntax, there are contextual constraint

rules that the precompiler must enforce; these rules (including scoping rules) are

explained in section B.3 of Appendix B. Additionally, section C.1 of Appendix C

defines the processing expected by the precompiler.

7.4 The sample application project

A sample application, Vocabulary Trainer, was constructed to demonstrate the use of

JWI in an actual Java project. To inspect the source code, please refer to the

instructions for accessing the application in Appendix D.

7.5 Summary

This chapter briefly introduced key points of the proposed solution. We will now

evaluate the solution in the next chapter.

 76

 77

8 Evaluating the proposed solution

The previous chapter presented the Design Intention Driven Programming and the

Java with Intentions scheme. We shall now critically evaluate this proposed solution.

8.1 Evaluation by the author

8.1.1 Degree of fit to requirements

Table 32 reiterates the requirements generated in Chapter 5, and for each

requirement, the degree of fit achieved by the proposed solution is evaluated.

Differentiation is made between the “ideal” solution with full IDE integration, and

the “compromise” solution offering only precompiler support.

Table 31 lists the codes used in Table 32.

Table 31: Legend of degree-of-fit codes used in Table 32

Code Degree of fit

Y Yes, solution meets requirement
P Partially meets requirement
N No, does not meet requirement

 78

Table 32: Summary and categorisation of requirements with degree of fit for potential solutions

Requirements
Proposed
approach

Category No. Description

D
ID

P/
JW

I (
id

ea
l I

D
E

-
ba

se
d

so
lu

tio
n)

D
ID

P/
JW

I
(p

re
co

m
pi

le
r

so
lu

tio
n)

R1 The solution shall ensure that documentation elements can
be tightly linked to, or embedded within, the source code (as
developers tend to prefer and trust the source code over
external documentation as an information source).

Y Y Relationship to
documentation
other software
artefacts

R3 The solution shall allow a developer to associate a
description with a section of code, giving an abstract
interpretation of that section of code for use in a written
representation of a bottom-up reconstruction of the
program’s structure.

Y Y

R2 A developer attempting to understand an existing program
using a top-down approach should be able to use the
solution to record his/her understanding as a hierarchical (or
otherwise interlinked) structure of textual descriptions of
program elements.

Y Y

R6 The solution shall allow some form of reusable templates to
be defined for comments or other forms of internal
documentation, so that similar comments share a
recognisable form.

Y Y

R9 The design of the solution shall allow comments or other
documentation elements to be structured in an object-
oriented fashion and to use object-oriented features such as
inheritance where reasonable.

Y Y

R10 The solution shall allow the embedding of diagrams in
documentation; if references to external diagrams must be
used, the solution should check the “relational integrity” of
references so that “dead links” do not arise.

P P

R12 The solution shall allow intention and rationale information
to be represented at different levels of abstraction.

Y Y

R13 The solution shall foster a literate style of programming,
encouraging explanatory text to be closely linked with
source code, ideally within the same document.

Y Y

R14 The solution shall allow code blocks to be associated with
intention descriptions (i.e., a textual summary of what the
code block is supposed to do), and this shall also apply to
code blocks at any level of nesting.

Y Y

R17 The solution shall support the documentation of both
“public” (exposed API) and “private” (internal
implementation) aspects of a system.

Y Y

Form and
structure of
documentation

R19 The solution shall allow comments or other forms of
documentation to be stored either 1. within source code files,
or 2. externally, with a robust interlinking system.

Y Y

R4 The solution shall be suitable for use with object-oriented
systems.

Y Y

R15 The solution must be practical for industrial-scale software
projects involving multiple developers.

Y Y

Applicability
domain of
solution

R27 The solution shall ideally support projects consisting of N N

 79

Requirements
Proposed
approach

Category No. Description

D
ID

P/
JW

I (
id

ea
l I

D
E

-
ba

se
d

so
lu

tio
n)

D
ID

P/
JW

I
(p

re
co

m
pi

le
r

so
lu

tio
n)

 artefacts written in multiple languages.
R8 The solution shall provide a means by which pattern

instances can be explicitly documented.
Y Y

R21 The solution shall aid in the documentation of delocalised
plans.

Y Y

R22 The solution shall allow maintainers to document their own
abstractions separately from any structures or abstractions
already used in the program.

Y Y

What can be
documented

R24 The solution shall be compatible with a test-driven
development approach and shall permit the documentation
of automated tests.

Y Y

R5 The solution shall include a mechanism to enforce the
presence of comments or other forms of internal
documentation.

Y Y Enforcement

R18 The solution shall attempt to enforce that comments or
internal documentation contain “reasonably sufficient”
contents, to the extent possible by current technology.

Y Y

R20 The solution shall encourage developers to follow a process
of recording their design intentions before writing code.

Y Y

R28 The solution shall encourage the recording of designs and
design decisions before code is written (the ideal case), but
shall also allow design information to be added to as-yet
undocumented code.

Y Y

Process

R25 The solution shall allow intention information to be
validated (e.g., by another designer or developer) before
code is written.

Y Y

Changing
mindset

R7 The design of the solution shall attempt to increase the
importance and visibility of comments or other forms of
internal documentation through the provision of some
process, mechanism, artefact, or construct.

Y Y

R11 The solution shall either aid in keeping code and diagrams
or models in synchronisation, or shall provide alerts when
changes to the code are made that may necessitate the
updating of diagrams or models.

N N Maintaining
quality of
documentation

R26 The solution shall encourage the updating of design
documentation when code is changed, or, if possible,
structure the process so that the design documentation must
be updated first.

N N

R16 The solution shall be capable of generating hypertext
documentation similar to Javadoc.

P P Aids to reading
documentation

R23 The solution shall provide hypertext navigation between and
within source code and documentation artefacts in the IDE.

Y N

The ideal variant meets 23 of the 28 requirements, with another two deemed to be

“partially” met. The limited precompiler variant meets 22 requirements, and two

“partially”.

 80

It should be noted that the requirements chosen in Chapter 5 are likely biased to

predispose the DIDP/JWI solution. Chapter 9 addresses this concern in more depth.

8.1.2 Potential benefits of the scheme

The DIDP/JWI approach offers several benefits:

• Constructing graphs of intentions, goals, and requirements allows the designs

of software systems to be structured in convenient ways (often mirroring

architectural structures of the software itself) and at varying levels of

abstraction;

• The application of inheritance to intention comments provides a templating

mechanism that is convenient for explicitly documenting design pattern

instances, something traditionally rarely done in practice;

• Similar to Javadoc, integrating documentation into source code increases the

chances that it will be seen and updated by future developers;

• The mechanisms for enforcing the use of intention comments, while

imperfect, provide some support for organisational policies mandating source

code documentation.

More fundamentally, if maintenance developers have access to well-structured

documentation describing design intentions and rationale, they will be able to more

quickly and more effectively understand the structure and behaviour of program

source code, theoretically reducing long-term software maintenance costs.

8.1.3 Attitudes in the literature towards the general
approach

Documenting intentions before writing code is not a new idea; it is the basis of the

familiar pseudocode method (McConnell, 2004, p. 176).

McConnell explains that intent descriptions are extremely valuable for later readers

(ibid., pp. 642-650). Raskin (2005) writes, “[t]he essential concept of writing the

 81

documentation first, creating the methods in natural language, and describing the

thinking behind them is a key to high-quality commercial programming… The use of

internal documentation is one of the most-overlooked ways of improving software

and speeding implementation” (p. 62).

However, such statements do not provide empirical evidence of the effectiveness of

the approach. Lethbridge et al. (2003) remark that little evidence other than “opinion

and conjecture” could be found that forcing developers to write verbose

documentation and keep it meticulously up-to-date is effective (p. 38).

8.1.4 Comparison with alternative approaches

The merger of documentation and code in the DIDP/JWI approach is patterned after

Literate Programming (Knuth, 1984), but the intention comment construct permits a

somewhat richer and more structured modelling of the reasoning and design behind a

program than hierarchically-organised free text.

DIDP is similar in nature to Perry and Grisham’s (2006) Intent-First Design

approach; both urge developers to record their intentions before constructing

software code. Intent-First Design envisions an IDE for manipulating “intent

models”, which are not concretely described but which might presumably resemble

intention graphs. Intent-First Design does not mention using programming language

constructs to record intention descriptions.

As a means of documenting delocalised plans, intention graphs share properties with

Robillard and Murphy’s (2007) concern graphs, which allow scattered source code

elements to be linked to concerns. Concerns are not represented as language

constructs as in JWI; instead, developers link code fragments to concerns using

wizards and views in the FEAT IDE (ibid., p. 5). Concerns do not appear to be

intended to be documentation artefacts; they take names but it is unclear whether

further descriptions can be attached. Concerns are arrangeable hierarchically; richer

interlinking and inheritance mechanisms do not appear to exist.

 82

8.1.5 Criticisms of the approach

Table 33 summarises the most significant criticisms of the proposed approach.

Table 33: Major criticisms of the Design Intention Driven Programming approach

Category Issue Description

No guarantee of
quality of comments

The JWI system enforces the presence of
intention comments, but cannot guarantee their
correctness. It makes a crude attempt to
enforce the sufficiency of descriptions for any
given section of code by comparing
information content metrics for the comment
text with a complexity metric for the code
section, and ensuring that the ratio meets a
threshold. As it is infeasible to algorithmically
interpret human-language text and determine
its “correctness” or general quality, developers
could still write nonsense descriptions that
satisfy the “sufficiency” check.

Limitations

No guarantee that
comments are
current with regard
to changes to the
code

Developers frequently modify code without
updating the corresponding comments, and the
JWI system is not immune to this problem. A
mechanism involving the source control
system could be added to detect changes in the
source code and flag intention comments
potentially affected by those changes. This
feature has not included in the proposed
solution, but a similar capability is
demonstrated by Robillard and Murphy’s
FEAT IDE (2007).

Cost of training and
familiarisation

Developers need to learn the syntax and
become proficient with the approach. Initial
learning costs may be borne by the
organisation (formal training) or by the
developers (learning on one’s own time). A
period of lowered productivity and higher
error rates can be expected as developers gain
proficiency.

Cost

Cost of slowing
down work

While a future benefit (easier comprehension)
is hoped for, in the present, it will take more
time to write or modify code if strict
documentation requirements are now
enforced.

Ambiguity
of benefits

Cost/benefit ratio
incalculable

Measuring performance and productivity of
software-related work is already notoriously
difficult, and without any past track record to
refer to, it is impossible to reliably estimate
imagined future benefits, making the
evaluation of the investment difficult.

 83

Category Issue Description
No guarantee of
future benefits

There is no guarantee that this approach will in
fact lead to long-term cost savings. Even if
intention comments do in fact make a system
easier to understand, it is possible that any
potential time savings are cancelled out by the
time spent maintaining the intention
comments.

Even if a case study were to show benefits in
one project or organisation, that anecdotal
evidence could not be extrapolated to suggest
that similar benefits would be enjoyed by all
projects or organisations.

Benefits not
measurable

Even if the approach does actually lead to cost
savings in a project, it would be impossible to
attribute the improved performance solely to
the use of the approach, as many other factors
(e.g., the skill and motivation of the team
members) may have contributed to or caused
the performance improvement effect.

Frustration of
developers

Documenting design intentions slows down
the pace of development and may go against
the “natural” way of writing programs that
developers have grown accustomed to.

Resistance of
developers to learn
yet another
technology or syntax

Developers already spend enormous amounts
of time keeping up-to-date with new
technologies; adding another language to this
burden only compounds the problem.

Discord in teams Project team members inevitably disagree on
process issues. Being forced to write
comments would likely stir up arguments
between proponents and opponents of the
scheme.

Management
expectations of
productivity

Management may introduce this system with
the expectation of improved productivity. Any
productivity increases are more likely to occur
in the long term, and productivity may suffer
in the near term.

Political

Means of
management control

Management, perceiving quality issues, may
dictate the use of the system without first
achieving buy-in from team members.

Ethical Burden on current
developers for the
benefit of future
developers

It can argued that it is an ethical violation to
force current developers to sacrifice their
productivity (and perceived job performance)
to write documentation that will not
immediately benefit them, but which will
improve the productivity and job performance
of other developers in the distant future. This
violates the principle of mutual benefit and
breeds ill will in project teams (Beck, 2005, p.

 84

Category Issue Description
14). (Ethical issues are explored in depth in
Appendix H.)

Misuses of metrics
by management

If the system outputs quality metrics, or if the
use of the system is accompanied by
performance measurement metrics, there is the
ethical concern that these metrics could be
used by a manager to compare the
performance of developers, and the metrics are
likely not fair or reliable indicators of
performance. (Ethical issues are explored in
depth in Appendix H.)

Technical Difficulty of
application to
heterogeneous-
technology projects

Most software is constructed using multiple
technologies (for example, a web application
using HTML, SQL, and PHP and integrating
with a legacy COBOL system). Intentions
spanning code in multiple languages would
require DIDP-compatible compilers for each
language and some means of data exchange
between them. The intention comment concept
might be difficult to apply to declarative
languages like SQL.

8.1.6 Evaluation of the Java with Intentions language
design

Table 34 attempts to evaluate the design of the JWI extensions against the language

evaluation criteria given by Bjork (2009)10.

10 This evaluation concerns only the language extensions and not the Java language on which the
language extensions are based.

 85

Table 34: Evaluation of Java with Intentions against language evaluation criteria (Bjork, 2009)

Category Criteria Evaluation and discussion

Well-defined syntax (lack
of ambiguity)

The syntax for the language
extensions is formally defined as
EBNF production rules in an ANTLR
grammar (see Appendix D).

Well-defined semantics
(lack of ambiguity)

The language extensions have no
“semantics” in terms of program
behaviour. The behaviour of the
language processor (precompiler) is
well-defined (see Appendix C).

Consistency with
commonly-used notation
and conventions

The naming of keywords and the use
of operators and symbols has been
designed to follow the conventions of
the Java language.

Uniformity (similar
constructs have similar
meaning)

Yes, in the sense that the similar
constructs intention, goal, and
requirement have identical features
and syntax.

Orthogonality (limited
number of features that can
be combined)

Yes, in the sense that the Java
abstract and extends keywords are
applicable to intention comments and
have similar semantics.

General-purpose (suitable
for any type of
program/application
domain)

Yes.

Ease of use

Good pedagogy (easy to
learn)

Difficult to judge without a study.

Supports development of
correct programs

The language extensions do not
explicitly support this other than to
help developers to structure
documentation, which may aid in
validation efforts.

Reliability (language makes
it difficult to make careless
errors)

Difficult to judge without a study.

Support for modularity Yes.
Support for separate
compilation

Yes.

Provides/enables data types
and data structuring

Yes, for documentation elements.

Software
engineering

Support for provability of
correctness

No.

Performance Lends itself to fast
compilation

The precompiler’s processing time is
reasonable for small projects but could
become an issue for extremely large
projects.

 86

8.1.7 Personal experiences constructing the sample
project

Constructing the intention graph for the sample application was difficult and arduous

at first, but partly this was due to doing this the first time, with the syntax still in

flux. Eventually, things started to “click” and it was pleasing to see how well the

scheme worked for documenting features that are implemented by means of a

number of interrelated methods and variables and classes in different files (i.e.,

delocalised plans or cross-cutting concerns). Representing requirements and

matching software structures to them also seemed to work well. Writing the

documentation, however, consumed a lot of time and required sustained

concentration. In real-world software projects, developers will have difficulty sparing

the time to write intention comments, and a cost-benefit analysis would be necessary

to justify the time and expense.

The sample application project reused code from a previous project. Converting

existing code was painstaking and confirmed the author’s intuition that the DIDP

approach is most suitable for constructing new systems. Applying intention

comments “after the fact” to existing code does force the developer to deeply engage

with and understand the code, however, which helps identify refactoring

opportunities.

In cases where new code was written, the author sometimes found himself writing

the code first and then adding the intention comments afterwards, seemingly a

“violation” of the suggested process. While this may simply be inexperience with

executing the approach, it does suggest that the “write the intentions first” approach

may be an unrealistic, unattainable ideal. However, as long as the documentation is

written up in the end as if it had existed all along, it still has the same benefit to later

readers (Parnas and Clements, 1986).

JWI is designed to co-exist with Javadoc comments; Javadoc comments are suitable

for documenting a publicly-exposed API, while intention comments can better

explain internal structures and rationale. However, replacing Javadoc comments for

classes with intention comments would mean that the Javadoc generated

documentation would be incomplete; not replacing them would lead to duplicated

 87

documentation. This is an issue that the author had not fully considered until building

the sample project was underway. Investigating a merger or “interoperability” of

intention comments with Javadoc comments is recommended in a next-generation

design.

Overall, the approach seems workable and useful, but not perfect, for describing the

internal structures of the sample application. However, the effectiveness depends on

the motivation and skill of the developer to construct a useful intention graph and

write descriptive comments. Also, the sample application is quite small, and studies

involving small-scale projects do not necessary scale up to larger, more complex

production systems (von Mayrhauser and Vans, 1995, p. 54).

8.2 External evaluation: Results, analysis, and
interpretation of Part B of the survey

Part B of the questionnaire asked participants for opinions and feedback after reading

a brief article (reproduced in Appendix G) introducing the DIDP/JWI approach. This

section summarises and analyses the results. Appendix E contains the questionnaire

text and summary statistics, and Appendix F contains the raw survey data.

 88

8.2.1 Survey results and interpretation

Receptivity to recording design intentions

Participants responded positively to the statement “The practice of recording design

intentions before writing code is a sensible idea”, with 85.7% registering agreement

(question Q68). 74.3% agreed that “[i]nstances of design patterns should be

documented for ease of understanding by later maintainers” (Q72).

Practicality

Asked whether “recording design intentions before writing code might be nice in

theory, but is impractical for real-world projects,” 34.4% agreed that it is impractical,

but 51.4% believed that it is not necessarily impractical (Q69).

48.6% agreed that developers would resent being forced to write documentation,

while 31.4% believed that this would not be the case (Q70). Several respondents

suggested in written responses that initial resistance might be overcome if the system

begins providing observable benefits to the developers (Q76, respondent 17; Q78,

respondent 7).

Applicability domain

77.2% of respondents viewed the solution as being suited to formal, document-

driven projects (Q74), while 40.0% viewed it as suitable for agile projects (Q73).

Perceived benefits

Some respondents see potential merit in the proposed solution: 51.4% of respondents

agreed that “[s]oftware projects consistently documented in this way would be easier

to understand than projects developed using traditional techniques” (Q75). But this is

far from being overwhelming support: 25.8% disagree, and 22.9% are neutral.

Respondents were polarised when asked if they “would be willing to give this

approach a try, at least on a trial basis,” with 48.6% agreeing and 37.2% disagreeing

(Q66).

 89

Coding analysis of free-text remarks

Respondents were given the opportunity to supply written remarks on the solution. A

coding analysis of this qualitative data was performed by identifying unique issues

raised in the remarks, counting the instances of each issue, categorising the issues,

and sorting the issues within each category. Table 35 and Table 36 present issues that

are critical and supportive of the proposed solution, respectively. Some problems

raised in Table 35 match problems named in section 8.1.5, while others are new.

 90

Table 35: “Critical” remarks in written survey responses evaluating the solution

Category Issue Count

Interesting idea but flawed 1
Not practical for real-world projects 1

Summary
evaluations

Sceptical 1
Unsuitable for Java and OO languages but might help in
functional languages

1 Evaluations of
applicability

Unsuitable for agile projects 1
Intention comments required to compile code would
cause frustration

4

Developers will resist (unless/until they see a clear
benefit to themselves)

3

Developers will bypass enforcement with bare-
minimum comments or garbage/noise

3

Forced comments add verbosity and clutter, hindering
understanding

2

Another syntax to learn is unwelcome 2
Does not solve problem of out-of-date comments not
matching code

2

Creates more work, increases costs of development 2
If people don't have time to write comments, how will
they have time to write intentions?

2

If people aren't disciplined enough to write decent
comments, why would extra syntax help?

1

Quality of comments not guaranteed 1
Human peer review of intention comments still needed 1
Mixing code and documentation problematic for
releases

1

Applying intention comments to existing code too time
consuming

1

Making comments look like code means comments will
have bugs

1

Unclear how to write intentions without knowing
context of the classes

1

No correctness checking 1
“Language abuse” unwelcome 1

Problems

Too much writing and duplication 1
Would soon get switched off (projects will abandon the
approach)

2 Predictions

Intention comments will not become a staple of any
programming language

1

Total number of “critical” remarks or issues raised 38

 91

Table 36: “Supportive” remarks in written survey responses evaluating the solution

Category Issue Count
Summary
evaluations

Nice/good idea 4

Evaluations of
applicability

Potentially useful for very complex systems 2

Would benefit developers new to the team and junior
developers

3

Would make code easier to read and understand 2
Would help ensure a minimum level of documentation 1
Would improve quality 1
Would improve maintainability 1
Might actually encourage developers to write useful
comments

1

Useful for requirements traceability 1
Generating documentation like Javadoc useful 1
Use of solution would set standards and values for
project

1

Justification/rationale useful 1
Highlighting relationships between pieces of code
useful

1

Benefits

Reuse of intentions convenient (e.g., for pattern
catalogues)

1

Total number of “supportive” remarks or issues raised 21

Table 37 lists alternatives to the proposed solution suggested by respondents.

Table 37: Alternatives to the proposed solution suggested by respondents

Category Alternative Count

Use Java annotations 3
Use Javadoc and Checkstyle 1

Technological

Use free-form comments 1
Use Test-Driven Development 2
Focus on achieving proper processes and workflow;
use reviews

2
Process

Focus on applying structured methods, UML, OOAD 1
Team Focus on building a good team and fostering good

communication
1

Quality Focus on good design 1
Training Students/developers should study design patterns and

APIs instead
1

 92

8.2.2 Further analysis

To try to better understand possible reasons why respondents favour or disfavour the

solution, hypothesis testing was conducted. As discussed in section 3.2.3, we use a

significance level (alpha) of 0.10.

Table 38 presents several hypothesised relationships and indicates whether sufficient

evidence could be found to support them. Appendix I explains the indices and

statistical procedures used in these tests.

Table 38: Hypotheses about factors influencing respondents’ support of the proposed solution

No. Hypothesis Represented

in the data by
(see
Appendix I)

Evidence (see Appendix
I)

Interpretation

H4 Those respondents
who generally
express support for
commenting and
documentation will
tend to be more
likely to express
support for the
proposed solution

Association
between index
IND01 and
index IND02

Pearson chi-square test:
p = 0.0572 < 0.10 (OK)

Fisher’s exact test:
p = 1.1x10-29 < 0.10 (OK)

Kendall’s Tau-b:
p = 0.0290 < 0.10 (OK)

 Tau-b = 0.29

Spearman’s correlation
coefficient:
p = 0.0295 < 0.10 (OK)

 r = 0.37

A very weak but
statistically significant
association of 0.26 (using
Kendall’s Tau-b) or 0.37
(using Spearman’s
correlation coefficient)
exists.

H5 Those with more
reported experience
will value the
proposed solution
more

Association
between
question Q64
and IND02

Pearson chi-square test:
p = 0.56 > 0.10 (NOK)

Fisher’s exact test:
p = 4.4x10-29 < 0.10 (OK)

Kendall’s Tau-b:
p = 0.54 > 0.10 (NOK)

Spearman’s correlation
coefficient:
p = 0.56 > 0.10 (NOK)

The evidence does not
support this hypothesis.

H6 Those who report
spending a larger
percentage of time
on maintenance will
value the proposed
solution more

Association
between
question Q63
and IND02

Pearson chi-square test:
p = 0.48 > 0.10 (NOK)

Fisher’s exact test:
p = 1.9x10-18 < 0.10 (OK)

Kendall’s Tau-b:
p = 0.32 > 0.10 (NOK)

The evidence does not
support this hypothesis.

 93

No. Hypothesis Represented
in the data by
(see
Appendix I)

Evidence (see Appendix
I)

Interpretation

Spearman’s correlation
coefficient:
p = 0.33 > 0.10 (NOK)

H7 Those who express
higher job
frustration will
value the proposed
solution more

Association
between
question
IND03 and
IND02

Pearson chi-square test:
p = 0.70 (NOK)

Fisher’s exact test:
p = 1.5x10-29 < 0.10 (OK)

Kendall’s Tau-b:
p = 0.23 > 0.10 (NOK)

Spearman’s correlation
coefficient:
p = 0.21 > 0.10 (NOK)

The evidence does not
support this hypothesis.

8.2.3 Interpretation

Many questions exhibit bipolar distributions, indicating that one group of

respondents consistently opposes the solution and another group tends to support it.

Partly this can be explained by the general observation in software organisations that

there are some developers who find documentation useful and there are those who

see documentation as an unnecessary burden, and the evidence for hypothesis H4 in

Table 38 indicates that those who favour documentation have tended to show slightly

more support for the solution. However, there may also be respondents who favour

documentation but disfavour the proposed solution due to any number of flaws.

Overall, the responses to the Likert-scale questions tended to be more favourable

toward the proposed solution than the author had expected, but this “support” for the

solution cannot be considered overwhelming or even a majority opinion. Again, there

was clearly a large group who did not find the solution acceptable. The written

comments contained more statements critical of the solution than statements

supporting the solution. The critical remarks were, uniformly, well-reasoned

explanations of problems with the solution that are indeed reason for concern.

The generally favourable responses might be attributable to several bias factors that

are discussed in Chapter 9.

 94

8.3 Summary

While the survey found some support in favour of the proposed solution, and the

sample project suggested that the approach is workable but labour-intensive, a

substantial number of problems were identified which suggest that the proposed

solution may be impractical for general use in software projects in industry.

In Chapter 9, we will critically examine the research methods used in this research

project and investigate the validity of the evaluation performed in the present

chapter.

 95

9 Evaluating the research methods
and the evaluation of the proposed
solution

This chapter reflects upon and evaluates each of the research methods used. In

particular, we are interested in investigating the reliability, validity, and

trustworthiness of the evaluation of the solution.

9.1 Questionnaire survey

9.1.1 Evaluation of execution of method

Setting up the survey ran smoothly, but attracting participants and convincing them

to take part was difficult. The number of responses was disappointing, but similar

software maintenance-related surveys including Yip et al. (1994) and Sousa and

Moreira (1998) have also reported very low participation rates. The duration of the

activity (up to 30 minutes) and the bland topic (software documentation) likely

discouraged many potential participants. Incentives boosted response rates, but the

author could not afford to offer incentives to all groups.

E-mail invitations to large groups gave a predictably low response rate. The Google

text ad was presented over 700,000 times but led to only two legitimate responses.

The response rate even amongst my friends and coworkers was disappointingly low;

repeated reminders were required and many who pledged to take the survey never

actually did. Nevertheless, a reasonable number of participants was achieved, with a

good diversity of geography, experience, and opinions, and the written responses

were generally well-written and insightful.

 96

9.1.2 Validity of survey results

Population validity

The survey sought responses from practicing software developers. Do the 38

responses accurately represent the opinions of the entire population of software

developers in the world? The small sample size increases the risk of drawing

inaccurate conclusions. Respondents were members of a convenience sample (Ruane,

2005, p. 117), i.e., people easy for me to reach, such as acquaintances, fellow

students, and members of e-mail distribution lists. Approximately ten responses were

from coworkers; having too many respondents from the same organisation could

potentially skew the results away from those obtained from a perfect random

sampling of the world’s population of software developers.

Measurement validity

Measurement validity refers to how successful a research instrument is at measuring

what it claims to measure.

Are the responses to the survey questions returning accurate measurements? The

majority of the survey’s questions involve opinions measured using a seven-point

Likert scale. Fowler (1995) considers this a valid approach for quantifying

“subjective states”, and argues that the validity of such measurements is

unquantifiable (and virtually irrelevant) as there are no “true”, objective values of

subjective opinions from which measurements can deviate due to bias or other

factors.

The article explaining the solution to participants was intentionally kept very brief.

It did not cover all aspects of the solution and did not address typical questions and

objections. Respondents’ opinions may have differed had they instead read Appendix

B describing the solution, or had they experimented with the prototype precompiler

or studied the sample application project. As was quoted earlier, “asking users about

the value of some proposed change without giving them experience of it is an

 97

essentially useless guide to their satisfaction with it in practice” (Draper, 1983, p.

86).

Bias

When interpreting the survey results and conclusions, the following sources of bias

must be considered:

• Only a small percentage of those who received invitations actually

participated in the survey. This is a case of self-selection bias (Weisberg et

al., 1996): only individuals interested in software documentation are likely to

spend the approximately 30 minutes to answer the survey. As individuals

with strong opinions in favour of documentation are most likely to

participate, a disproportionately large percentage of respondents will hold

such opinions, and hypothesis test H4 in Table 38 shows that those who

favour documentation in general are more likely to express support for the

solution. Thus the relatively high levels of support for the solution exhibited

by the survey cannot be considered entirely representative of the population

of software developers as a whole.

• Participants who know the author personally, or those who were offered

incentives, may have intentionally or unintentionally answered questions in

such a way as to give support to the proposed solution, in order to avoid

offending the author or in the belief that positive responses would help the

author personally.

• Questions asking about opinions on documentation may suffer from social

desirability bias (Weisberg et al., 1996, p. 86). Having been taught that it is

good practice to write comments, participants may be inclined to say that they

favour writing comments, when in fact they seldom do so.

Care was taken during the design of the questionnaire to avoid intentionally biasing

the responses toward some preferred result. For example, an attempt was made to

intersperse positively- and negatively-phrased questions to prevent temptations of

 98

uniformly agreeing or disagreeing with all statements in a series. There is still the

risk that a “leading question” early in the survey causes the respondent to take a

position on some issue, which then shapes the later responses so that those responses

are consistent with the original position (as the respondent does not want to appear

inconsistent). Despite care taken to combat any intentional bias, bias may exist in the

questionnaire and would skew the results.

Reliability

Reliability, a component of validity, assesses whether measurements are accurate and

trustworthy (Sapsford, 2007, p. 15). For surveys, reliability can be tested by checking

the stability of measures. If the same question is asked twice during the

questionnaire, the responses should usually be similar if not identical; if they diverge

greatly, the instability casts the reliability of the research instrument into doubt

(ibid.).

In the first version of the questionnaire, redundancy was intentionally present in the

form of question pairs (one positively-formulated and one negatively-formulated)

that essentially asked the same question. Redundancy was eliminated after trial run

participants complained about repetitive questions, however; this was a mistake, as

reliability tests must now involve questions that are vaguely similar but not identical.

A positive association is expected between responses for questions Q08, “In general,

I consider the quality of the existing code I work on to be very good” and Q44, “The

general quality of comments [in the system you work on] is high”; with a confidence

level (alpha) of 0.10, the association is 0.57, which is reasonable given that the

questions discuss two different but related subjects (code and comments).

A negative association would be expected between mean responses for Q49, “I find

that comments get in my way”, and Q50, “Having better comments and

documentation in the existing code would make my job easier”, but with a

confidence level (alpha) of 0.10, no statistically-significant association could be

found (one would have to use an alpha of 0.33 to get a weak negative association of -

0.12).

 99

The reliability test must be judged inconclusive, and this is a failing of the survey

design. The ultimate test of reliability is for another researcher to replicate the results

with a similar but non-identical study.

9.2 Formulating requirements

The author had already conceived of the fundamental idea for the proposed solution

before conducting the literature review. The literature review in Chapter 5 was

therefore not only a familiarisation with the subject area and a search for

requirements, but also a search for “prior art”, i.e., seeking to determine whether the

envisioned scheme had already been proposed. The presupposition of a potential

solution unquestionably shaped the direction of the literature survey, and although

the author attempted to impartially generate requirements for a general solution of

the “constructive” category identified in Chapter 4, having had the conceptual idea

already in mind, the requirements are undoubtedly preselected to favour the author’s

own proposed solution.

9.3 Conceptualising, designing, and elucidating
the solution

The language design evolved as ideas were generated, as experiences were gained

through constructing the sample application, and as problems were identified during

the construction of the precompiler. Attempting to describe the DIDP/JWI approach

in a clear and concise manner was particularly difficult and took several iterations.

9.4 Defining the language syntax and
implementing the prototype

Not having previously designed a programming language formally and having little

experience with compiler-construction tools like ANTLR, the author encountered

challenges while designing the Java with Intentions syntax and implementing the

precompiler. It took several iterations to discover and resolve inconsistencies and

 100

problems in the planned syntax and approach. One lasting issue is that ANTLR’s

particular tokenisation strategy prevents the originally planned use of braces to

surround free-text fields (such as used with the description keyword), as the lexer

is unaware of the grammatical context in which tokens exist. (Of course, this is

obvious in hindsight.) As a workaround, “double-braces” tokens (“{{“ and “}}”) are

used for text fields in the prototype implementation and sample application, while in

the text of this dissertation, single braces remain in the examples as this is still the

“ideal” syntax. The problem could be avoided by writing a custom (non-ANTLR),

context-aware lexer that can identify whether the description keyword has been

processed immediately before an opening brace.

ANTLR’s error messages are extremely obscure. Internet searches were often

required to determine what they really meant and to find out how other users had

overcome similar issues. Investigating errors consumed far more time than expected.

The originally-planned scope of the implementation of the precompiler was

unfortunately not completed in the time available, but what was implemented (see

the statement of scope in Appendix C) serves as an effective proof-of-concept that

the language extensions can be stripped out and the resulting plain Java source code

can be fed to the javac compiler.

9.5 Self-evaluation of the solution

Any evaluation that a designer performs on his or her own product is inherently

subject to a “self-evaluation” bias, the desire to not find fault with one’s own work.

While this bias cannot be completely eliminated, the author has remained aware of

its risk throughout the project and has strived to conduct the evaluation objectively

and impartially, turning a critical and sceptical eye to the proposed solution and

enumerating and frankly discussing the solution’s problems and disadvantages.

The use of the survey to collect opinions from people other than the author is an

important way to provide additional perspective.

 101

9.6 General remarks on validity

Sapsford argues that, fundamentally, underlying “validity” is a question of trust in

the honesty of the researcher. He writes, “All research depends ultimately on our

trust that the researcher is at worst incompetent or ‘short-sighted’ but not positively

mendacious” (2007, p. 16).

The author has attempted to conduct the survey and the evaluation impartially and

without conscious bias, but this is no guarantee that biases or methodological errors

have not affected the research. This dissertation has attempted to declare all potential

biases, key choices, and weaknesses of the research methods. The reader is asked to

note these and make allowances when interpreting and judging the results and

conclusions.

9.7 Summary

Reflecting on each research method used, this chapter has identified potential biases

and methodological weaknesses that may impact the research results. With these

caveats in mind, the following and final chapter will formulate conclusions based on

the results of the evaluation of the solution.

 102

 103

10 Conclusions

In this chapter, we interpret the results of the evaluation in order to answer Part 3 of

the research question: having designed a solution, how feasible, practical, and

effective is it? We summarise and conclude the dissertation with a discussion of the

likelihood of the solution being adopted in real-world projects. Finally, we will

examine the dissertation’s contribution to knowledge, reflect on the research project,

and discuss opportunities for further research.

10.1 Judging the feasibility, practicality, and
effectiveness of the DIDP/JWI scheme

Feasibility

The construction of the prototype precompiler demonstrates that the language design

and the required processing are technically feasible. Unfortunately, time constraints

prevented the implementation of the sufficiency checking mechanism that would

compare complexity and information content metrics, a key part of the approach.

The construction of the sample application (Vocabulary Trainer) using JWI

demonstrated the general feasibility of documenting a small project with intention

comments. However, it remains to be seen whether the complexity of interlinkages

could become overwhelming in larger projects.

Practicality

The analysis and survey revealed a significant number of problematic issues that may

render the scheme unsuitable for many projects and teams. While the author does not

necessarily consider any of the problems to be severe or fatal flaws, a number of

survey respondents disagree. Further studies investigating the advantages and

disadvantages in long-term projects are required, and in any case, the judgement of

whether the problems outweigh the benefits is largely subjective, depending heavily

on the individual project situations and contexts in which the scheme would be used.

 104

Despite the potential problems, 51.4 percent of survey respondents felt that the

DIDP/JWI scheme could be practical in real-world projects, and 48.6 percent were

willing to consider using it on a trial basis. 85.7 percent favour the general approach

of recording design intentions before writing code. However, these figures are likely

skewed upward by self-selection bias. At least 20 to 25 percent of respondents are

highly sceptical of the scheme; the actual figure is likely higher in the larger

population of software developers.

The resistance of developers to writing documentation, the cost (at least in the short

term) of writing additional documentation, and the frustration that could emerge

from documentation enforcement are three major objections. The scheme could only

realistically be used in project teams having a unanimous opinion that intention

documentation is worthwhile.

Effectiveness

The final decision of whether to employ the DIDP/JWI solution in a software project

hinges largely on the question of whether the expected benefits outweigh the costs.

The evaluation established that consistently documenting design intentions is very

time-consuming. In most organisations, this expense would only be justifiable if

evidence existed that intention documentation would make later program

comprehension and maintenance easier and that this would lead to long-term cost

savings.

Again, the underlying question that would have been most interesting to answer –

whether a language-based comment enforcement scheme can really lead to long-term

cost savings in large software development projects – unfortunately remains

unanswered due to the infeasibility of the required research methods within the

context of this research project. The cost/benefit question is a major part of

evaluating the effectiveness of the proposed solution, and needs to be addressed by

follow-up research.

The author, reflecting on the experience of constructing the sample application using

JWI, found graphs of intention comments to be an effective way of representing

 105

requirements, patterns, and software structures that spanned multiple files. Further

research, however, is required to determine whether developers in general would find

intention graphs more useful than alternative approaches during program

comprehension.

10.2 On the likelihood of adoption of the scheme

Lethbridge et al. (2003) argue that developers are not necessarily lazy with respect to

writing documentation, but rather, developers make cost-conscious value

judgements, writing and updating only those forms of documentation perceived as

relevant such as test cases and bug reports. They suggest that attempting to force

discipline on developers tends to backfire, so instead developers should be

empowered with “simple yet powerful documentation formats and tools”. The

DIDP/JWI approach was created out of a vision of empowering developers with a

tool to help them build better software with less long-term frustration. But its

simplicity is subject to debate (some comments in the questionnaire were critical of

this), and, ironically, the comment sufficiency enforcement aspect of DIDP is itself a

form of top-down discipline enforcement. Instead of empowering developers, this

scheme may very well burden them.

There seem to be two factions in the developer community: those who like to read

and write documentation, and those who do not. In general, the former group would

probably find the DIDP/JWI solution a useful aid (unless they considered any of the

solution’s problems to be fatal flaws), and the latter group would probably

vigorously reject it. Perhaps the following quote summarises it best:

“People who like this sort of thing will find this the sort of thing they like.”

– attributed to Abraham Lincoln

It is unsatisfying to end a dissertation with such an indefinite conclusion, but the

topic is fundamentally a “soft” and qualitative one; the practicality and usefulness of

any potential new technology are dependent on the context in which it may be used

and the personal preferences of those using it.

 106

Let us make the following analogy. Had we presented an introduction to object-

oriented programming (before it had become mainstream) and evaluated it using a

survey similar to that used in this dissertation, we would likely get similar mixed

results. Some would like it; some would hate it, pointing out critical problems.

Object-oriented programming is useful in some situations and inappropriate in

others, and the DIDP/JWI approach is probably similar – barring any fatal flaws, it

could very well be useful for the right projects and teams, and yet it will be

completely unsuitable for others. So although further studies are needed to overcome

the limitations of the survey method and give deeper insights into the solution’s

potential effectiveness, those further studies won’t change the fact that the solution is

not a panacea suitable for use in every situation.

Realistically, even if DIDP/JWI may potentially have some merit, because its costs

and benefits are uncertain, because its documentation enforcement aspect is

imperfect, and because using it really involves quite a substantial amount of work

which developers are generally reluctant to do, it probably has little chance of

gaining widespread use in industry, and will likely remain a curiosity like the other

Literate Programming systems (Knuth, 1984) surveyed in Chapter 5.

As a final practical matter, Table 39 provides a recommendation of a checklist of

steps for software project teams considering adopting DIDP/JWI (assuming that a

production-quality implementation is available).

 107

Table 39: Checklist of recommended steps for project teams considering adopting DIDP/JWI

Step Description

1 Identify whether the approach is potentially suitable for the project
2 Discuss with all team members their personal views on software

documentation
3 Seek consensus amongst team members and management on whether to

proceed further
4 Estimate costs and benefits
5 Have one or more developers conduct a trial of the approach and the tools

using a small-scale prototype project
6 On the basis of the estimates and the results of the trial, decide whether to

proceed
7 Plan the implementation strategy, budgeting sufficient time for

training/learning/familiarisation and sufficient time for using the approach
during the construction phase

8 Plan and implement a training programme
9 Identify a developer willing to become an expert on the approach and tools

and who can serve as a mentor to other members of the team
10 Schedule regular code review sessions to help ensure that team members are

using the approach correctly and efficiently
11 At regular intervals, review the process, make adjustments as necessary, and

decide whether to continue using the approach

10.3 Contribution to knowledge

Part A of the survey provided confirmation that practicing software developers report

difficulties with software maintenance, with many results confirming similar results

reported by de Souza et al. (2005), Sousa and Moreira (1998), and others.

The Design Intention Driven Programming approach, the intention comment

construct, intention graphs, and the comment enforcement scheme are novel

contributions to knowledge. The approach can be seen as an extension or refinement

of the Literate Programming concept (Knuth, 1984).

The evaluation, including Part B of the survey, contributed some evidence that the

approach could potentially be useful in some circumstances, but has drawbacks that

make its adoption by industry unlikely.

 108

10.4 Project review

10.4.1 Addressing the research question

Table 40 revisits the multi-part research question from Chapter 1 and shows that the

three parts of the question have been addressed.

Table 40: Evaluation of satisfaction of research question

Part Research question portion Evaluation
PART 1 What evidence can be found to

justify the design of a new
solution to aid the recording
intention and rationale
information during software
development?

In Chapter 3, the evidence from the
literature and from the results of Part
A of the survey was deemed sufficient
to justify seeking a new solution.

PART 2 What are the requirements for an
“ideal” solution?

In Chapter 5, a list of 28 requirements
was generated by surveying the
literature and examining past attempts
at solutions.

PART 3 Given the requirements for an
ideal solution, can a design for a
solution be developed that is
feasible, practical, and effective?

In Chapter 7, a new solution was
presented, and a rudimentary
prototype of the solution was
implemented. The present chapter
(Chapter 10) has made conclusions on
the feasibility, practicality, and
effectiveness of the solution.

10.4.2 Reflecting on the project

Time constraints were the major difficulty in completing the project; given more

time, or at least fewer work-related issues, the project likely might have taken a

different shape.

More time was spent teaching myself statistical analysis techniques and learning to

use the SAS software than was actually necessary. The simplest analysis techniques

contributed the most value to the argument.

Acquiring participants for the survey was a challenge, and the low response rate

weakens the dissertation.

 109

Asking different questions on the survey would have possibly enabled better insights,

but this is only recognisable in hindsight.

More interesting knowledge could have been generated if the long-term case study or

comprehension quiz experiment methods could have been applied instead of the

survey. These are suitable topics for follow-up studies, which are discussed in the

following section.

10.5 Opportunities for future research

Table 41 discusses possibilities for follow-up research projects.

Table 41: Opportunities for further research

Category No. Project

1 Investigate, using a comprehension quiz experiment
such as those conducted by Prechelt et al. (2002) and
Nurvitahdi et al. (2003), whether intention comments
and intention graphs make software systems easier to
understand

Testing claims of
effectiveness
(comprehension, cost
savings)

2 Conduct a long-term comparative case study to study
long-term advantages and disadvantages and to
determine if evidence can be found that the
DIDP/JWI approach leads to cost savings

Concretisation of
design

3 Construct and compare algorithms for computing
information content and code complexity metrics,
and determine “acceptable” threshold ratios, perhaps
by conducting a study or experiment involving
practicing developers working with real-world source
code

4 Design a scheme to detect changes in the source code
and flag corresponding intention comments that may
need updating; Robillard and Murphy (2007, p.11)
discuss means for performing this type of
inconsistency management

5 Design a next-generation language/toolset merging
intention comments and Javadoc into a single,
unified scheme

Refinements and new
features

6 Design a scheme where requirements and external
documents such as specifications and architectural
designs can be stored in a Wiki or other repository
and referenced from within the source code

Seeking synergies 7 Investigate how DIDP can be better tied in with the
Test-Driven Development approach

 110

 111

References

American Heritage Dictionary (2009) American Heritage Dictionary of the English

Language (4e), Houghton-Mifflin.

Aspelund, K. (2010) The design process, New York: Fairchild Books.

Babar, M.A., Tang, A., Gorton, I., and Han, J. (2006) ‘Industrial perspective on the

usefulness of design rationale for software maintenance: A survey’ in
Proceedings of the Sixth Annual Quality Software International Conference,
Beijing, Oct. 2006, pp. 201-208.

Bauer, F.L., and Wössner, H. (1972) ‘The Plankalkül of Konrad Zuse: A forerunner

of today’s programming languages’ in Communications of the ACM, Vol. 15,
No. 7 (July 1972), pp. 678-685.

Beck, K. (2004) Extreme programming explained: Embrace change, Upper Saddle

River, NJ: Addison-Wesley Professional (Pearson Education).

Bjork, R.G. (2009) Language evaluation criteria [online], a handout for course CPS

323 at Gordon College, Wenham, MA, http://www.math-
cs.gordon.edu/courses/cs323/lectures-2009/LanguageEvaluationCriteria.pdf
[accessed 2 August 2010].

Boehm, B. (1976) ‘Software engineering’ in IEEE Transactions on Computers, Vol.

C-25, Issue 12, pp. 1226-1241.

Booch, G., Rumbaugh, J., and Jacobson, I. (2005) The Unified Modeling Language

user guide (2e), Upper Saddle River, NJ: Addison-Wesley Professional
(Pearson Education).

Bratman, M.E. (1987) Intention, plans, and practical reason, Cambridge, MA:

Harvard University Press.

Brooks, R. (1980) ‘Studying programmer behaviour experimentally: The problems

of proper methodology’ in Communications of the ACM, Vol. 23, Number 4
(April 1980), pp. 207-213.

Brooks, R. (1982) ‘A theoretical analysis of the role of documentation in the

comprehension of computer programs’ in Proceedings of the 1982
Conference on Human Factors in Computing Systems, Gaithersburg, MD, pp.
125-129.

Brooks, R. (1983) ‘Towards a theory of the comprehension of computer programs’,

quoted in von Mayrhauser, A., and Vans, A.M. (1995) ‘Program
comprehension during software maintenance and evolution’, IEEE Computer,
Vol. 28, Issue 8 (August ’95), pp. 44-55.

 112

Butler, S., Wermelinger, M., Yu, Y., and Sharp, H. (2010) ‘Exploring the influence
of identifier names on code quality: An empirical study’ in Proceedings of
the 14th European Conference on Software Maintenance and Reengineering,
15-18 March 2010, Madrid, Spain.

Checkstyle (n.d.) Checkstyle 5.1 documentation [online],

http://checkstyle.sourceforge.net/config_javadoc.html [accessed 7 March
2010].

Chuntao, D. (2009) ‘Empirical study on college students’ debugging abilities in

computer programming’, in Proceedings of the 1st International Conference
on Information Science and Engineering (ICISE 2009), Nanjing, pp. 3319-22.

Collins English Dictionary (2003) Collins English Dictionary, Complete and

Unabridged, Harper-Collins, 2003.

Corbi, T. A. (1989) ‘Program understanding: Challenge for the 1990s’, in IBM

Systems Journal, Vol. 28, No. 2, pp. 294-306.

De Souza, S.C.B., Anquetil, N, and de Oliveria, K.M. (2005) ‘A study of the

documentation essential to software maintenance’, in ACM Special Interest
Group for Design of Communication: Proceedings of the 23rd Annual
International Conference on Design of Communication: Documenting and
Designing for Pervasive Information, pp. 68-75.

Devanbu, P.T., Brachman, R.J., Selfridge, P.G., and Ballard, B.W. (1990) ‘LaSSIE –

a knowledge-based software information system’ in Proceedings of the 12th
International Conference on Software Engineering (ICSE’90), pp. 249-261.

Eclipse Foundation (n.d.) Eclipse software development environment [online],

http://www.eclipse.org [accessed 27 June 2010].

Fagan, M.E. (1976) ‘Design and code inspections to reduce errors in program

development’, in IBM Systems Journal, Vol. 15, No. 3, pp. 182-211.

Fjeldstad, R. K. and W. T. Hamlen (1979) ‘Application program maintenance study:

Report to our respondents’ in Proceedings GUIDE 48, Philadelphia, PA,
Tutorial on Software Maintenance, G. Parikh and N. Zvegintzov, eds., IEEE
Computer Society.

Forward, A., and Lethbridge, T.C. (2002) ‘The relevance of software documentation,

tools and technologies: A survey’, Proceedings of the 2002 ACM Symposium
on Document Engineering, pp. 26-33.

Fowler, F.J. Jr. (1995) Improving survey questions: Design and evaluation,

Thousand Oaks, CA: SAGE Publications.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design patterns:

elements of reusable object-oriented software, Boston, MA: Addison-Wesley.

 113

Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., and Lea, D. (2006) Java
concurrency in practice, Upper Saddle River, NJ: Addison-Wesley (Pearson
Education), p. 7. See also
http://www.javaconcurrencyinpractice.com/annotations/doc/index.html
[accessed 4 May 2010].

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005) The Java Language

Specification, 3e, Upper Saddle River, NJ: Prentice Hall.

Gray, G., and Guppy, N. (1994) Successful surveys: Research methods and practice,

Toronto: Harcourt Brace & Company Canada.

Grubb, P. and Takang, A.A. (2003) Software maintenance: concepts and practice

(2e), Singapore: World Scientific Publishing.

Halasz, F.G., Moran, T.P., and Trigg, R.H. (1987) ‘Notecards in a nutshell’ in

Proceedings of the SIGCHI/GI Conference on Human Factors in Computing
Systems and Graphics Interface, Toronto, pp. 45-52.

Holzinger, A. (2005) ‘Usability engineering methods for software developers’ in

Communications of the ACM, Vol. 48, Issue 1, January 2005.

IBM Corporation (1956) The FORTRAN automatic coding system for the IBM 704

EPDM: Programmer’s reference manual, New York, NY: IBM Corporation.

Imagix Corporation (2010) Imagix 4D (product website); http://www.imagix.com

[accessed 30 December 2010].

Jackson, W. (1988) Research methods: Rules for survey design and analysis,

Scarborough, Ontario: Prentice-Hall Canada.

JavaCC (n.d.) Java Compiler Compiler (JavaCC) – The Java Parser Generator

[online], https://javacc.dev.java.net [accessed 24 October 2010].

Jones, C. (2006) The economics of software maintenance in the twenty-first century

(technical report), version 3 – February 14, 2006, Hendersonville, NC:
Software Productivity Research;
http://www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf
[accessed 17 May 2010].

Kajko-Mattsson, M. (2005) ‘A survey of documentation practice within corrective

maintenance’ in Empirical Software Engineering, 10, 31-55, 2005, pp. 31-55.

Knuth, D.E. (1984) ‘Literate programming’ in The Computer Journal (British

Computer Society), Vol. 27, No. 2, pp. 97-111.

Knuth, D.E., and Levy, S. (1994) The CWEB system of structured documentation,

Boston, MA: Addison-Wesley Longman.

Ko, A.J., Aung, H.H., and Myers, B.A. (2005) ‘Eliciting design requirements for

maintenance-oriented IDEs: A detailed study of corrective and preventative

 114

maintenance tasks’ in 27th International Conference on Software
Engineering, St. Louis, MO., May 2005, pp. 126-135.

LaToza, T.D., Venolia, G., and DeLine, R. (2006) ‘Maintaining mental models: A

study of developer work habits’ in Proceedings of the 28th International
Conference on Software Engineering, pp. 492-501.

Letovsky, S. (1986) ‘Cognitive processes in program comprehension’ in Empirical

Studies of Programmers, pp. 58-79, New York, NY: Ablex Publishing;
referenced in von Mayrhauser, A., and Vans, A.M. (1995) ‘Program
comprehension during software maintenance and evolution’ in IEEE
Computer, Vol. 28, Issue 8 (August ’95), pp. 44-55.

Leveson, N. (2000) ‘Intent specifications: An approach to building human-centered

specifications’ in IEEE Transactions on Software Engineering, Vol. 26, No.
1, January 2000, pp. 15-35.

Lientz, B.P., and Swanson E.B. (1980) Software maintenance management, Reading,

MA: Addison-Wesley.

Linos, P., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P., and Tulula, P. (1994)

‘Visualizing program dependencies: An experimental study’, in Journal of
Software – Practice and Experience, Vol. 24, Issue 4, April 1994.

M801 (2007) M801 Research project and dissertation: Study guide, Milton Keynes,

Open University.

McConnell, S.C. (2004) Code complete (2e), Redmond, WA: Microsoft Press.

Meyer, B. (1992) ‘Applying “design by contract”’ in IEEE Computer, Vol. 25, Issue

10 (Oct. 1992), pp. 40-51.

Microsoft Research (n.d.) Intentional programming (demonstration videos) [online];

Part 1: http://www.youtube.com/watch?v=tSnnfUj1XCQ; Part 2:
http://www.youtube.com/watch?v=ZZDwB4-DPXE [accessed 4 May 2010].

Miller, G.A. (1956) ‘The magical number seven, plus or minus two: Some limits on

our capacity for processing information’ in Psychological Review, Vol. 63,
Issue 2, pp. 81–97.

Morales-Germán, D. (1994) ‘An SGML-based programming environment for literate

programming’, in Proceedings of the 1994 Conference of the Centre for
Advanced Studies on Collaborative Research (IBM Centre for Advanced
Studies Conference), Toronto, pp. 47-

Müller, H.A., Wong, K., and Tilley, S.R. (1994) ‘Understanding software systems

using reverse engineering technology’, in Proceedings of the 62nd Congress
of l’Association canadienne française pour l’avancement des sciences
(ACFAS 1994), Montréal.

 115

Norman, D.A. (1998) The design of everyday things. New York, NY: Basic Books,
pp. 45-46.

Nørmark, K. (2000) ‘Requirements for an elucidative programming environment’ in

Proceedings of the 8th International Workshop on Program Comprehension,
pp. 119-129.

Nurvitadhi, E., Leung, W.W., and Cook, C. (2003) ‘Do class comments aid Java

program understanding?’ in 33rd Annual ASEE/IEEE Frontiers in Education
Conference, 2003, Boulder CO, pp. 13-17.

Parnas, D.L., and Clements, P.C. (1986) ‘A rational design process: how and why to

fake it’ in IEEE Transactions on Software Engineering, Vol. 12, Issue 2, pp.
251-257.

Parnas, D.L. (2003) ‘The limits of empirical studies of software engineering’ in

Proceedings of the 2003 International Symposium on Empirical Software
Engineering (ISESE’03), Rome, Italy, pp. 2-5.

Parr, T. (n.d.) ANTLR: ANother Tool for Language Recognition [online],

http://antlr.org/ [accessed 24 October 2010].

Parr, T. (2007) The definitive ANTLR reference: Building domain-specific languages,

Raleigh, NC: Pragmatic Bookshelf.

Parr, T. (2008) A Java 1.5 grammar for ANTLR v3 derived from the spec [online],

http://www.antlr.org/grammar/1152141644268/Java.g [accessed 16 May
2010].

Perry, D.E., and Grisham, P. (2006) ‘Architecture and design intent in component &

COTS based systems’ in Proceedings of the Fifth International Conference
on Commercial-off-the-Shelf (COTS)-Based Software Systems (ICCBSS
2006), pp. 155-165.

Pfleeger, S.L. (1998) Software engineering: Theory and practice, Upper Saddle

River, NJ: Prentice-Hall.

Pieterse, V., Kourie, D.G., Boake, A. (2004) ‘A case for contemporary literate

programming’ in Proceedings of the 2004 annual research conference of the
South African institute of computer scientists and information technologists
on IT research in developing countries (SAICSIT), Stellenbosch, South
Africa, Vol. 75, pp. 2-9.

Prechelt, L., Unger-Lamprecht, B., Phillipsen, M., and Tichy, W.F. (2002) ‘Two

controlled experiments assessing the usefulness of design program
documentation in program maintenance’ in IEEE Transactions on Software
Engineering, Vol. 28, No. 6, June 2002.

Pressman, R.S. (2010) Software engineering: a practitioner’s approach, New York:

McGraw-Hill Higher Education.

 116

Ramsey, N. (1994) ‘Literate programming simplified’ in IEEE Software, Vol. 11,
Issue 5 (Sept. 1994), pp. 97-105.

Raskin, J. (2005) ‘Comments are more important than code’ in ACM Queue, Vol. 3,

Issue 2 (March 2005), pp. 62-64.

Richards, L. (2005) Handling qualitative data: A practical guide, London: SAGE

Publications.

Robillard, M.P., and Murphy, G.C. (2007) ‘Representing concerns in source code’ in

ACM Transactions of Software Engineering and Methodology, Vol. 16, No.
1, Article 3, Feb. 2007.

Root, R.W. and Draper, S. (1983) ‘Questionnaires as a software evaluation tool’ in

Proceedings of the SIGCHI conference on Human Factors in Computing
Systems (1983), Boston, MA, pp. 83-87.

Ruane, J.M. (2005) Essentials of research methods: A guide to social science

research, Malden, MA: Blackwell Publishing.

Rüping, A. (2003) Agile documentation: a pattern guide to producing lightweight

documents for software projects, Chichester: John Wiley & Sons.

Ryman, A. (1992) ‘Foundations of 4Thought’ in Proceedings of the 1992 CAS

Conference, Volume I, pp. 133-155, Nov. 1992.

Sametinger, J. (1994) ‘Object-oriented documentation’ in Journal of Computer

Documentation, Vol. 18, No. 1, pp. 3-14.

Sapsford, R. (2007) Survey research (2e), London: SAGE Publications.

Schauer, R. and Keller, R.K. (1998) ‘Pattern visualization for software

comprehension’ in Proceedings of the 6th International Workshop on
Program Comprehension (WPC '98), Ischia, pp. 4-12.

Schlotzhauer, S.D. (2009) Elementary statistics using SAS, Cary, NC: SAS Institute

Inc.

Schünemann, U. (2001) Defining programming languages [online],

http://web.cs.mun.ca/~ulf/pld/write.html [accessed 4 January 2011].

Shearer, C.D., and Collard, M.L. (2007) ‘Enforcing constraints between

documentary comments and source code’ in 15th IEEE International
Conference on Program Comprehension (ICPC’07), pp. 271-280.

Simonyi, C. (1995) The death of computer languages, the birth of intentional

programming, Technical Report MSR-TR-95-52, Redmond, WA: Microsoft
Research. Available at: ftp://ftp.research.microsoft.com/pub/tr/tr-95-52.doc
[accessed 9 May 2010].

 117

Simonyi, C. (2005) ‘Is programming a form of encryption?’ in The Intentional
Software Corporation Blog,
http://blog.intentsoft.com/intentional_software/2005/04/dummy_post_1.html
[accessed 9 May 2010].

Simonyi, C., Christerson, M., and Clifford, S. (2008) ‘Intentional software’ in

Proceedings of the 21st annual ACM SIGPLAN conference on object-
oriented programming systems, languages, and applications, Portland, OR,
pp. 451-464.

Soloway, E. (1986) ‘Learning to program = learning to construct mechanisms and

explanations’ in Communications of the ACM, Vol. 29, Number 6, pp. 850-
858.

Soloway, E., Pinto, J., Letovsky, S., Littman, D., and Lampert, R. (1988) ‘Designing

documentation to compensate for delocalized plans’ in Communications of
the ACM, Vol. 31, Number 11, pp. 1259-1267.

Sousa, M.J.C., and Moreira, H.M. (1998) ‘A survey on the software maintenance

process’ in Proceedings of the 1998 International Conference on Software
Maintenance, Bethesda, MD, Nov. 1998, pp. 265-274.

Standish, T.A. (1984) ‘An essay on software reuse’ in IEEE Transactions on

Software Engineering, Vol. SE-10, Issue 5, pp. 494-497, cited in Robson,
D.J., Bennett, K.H., Cornelius, B.J, and Munro, M. (1991) ‘Approaches to
program comprehension’ in Journal of systems software, Vol. 14, pp. 79-84.

Storey, M.-A.D., Fraccia, F.D., and Müller, H.A. (1997) ‘Cognitive design elements

to support the construction of a mental model during software visualization’
in Proceedings of the 5th International Workshop on Program
Comprehension (WPC '97), pp. 17-28.

Sun Microsystems (1997, 2004) Javadoc 5.0 Tool [online],

http://java.sun.com/j2se/1.5.0/docs/guide/javadoc/index.html [accessed 7
March 2010].

Sun Microsystems (2004) JDK 5.0 Developer’s Guide: Annotations [online],

http://java.sun.com/j2se/1.5.0/docs/guide/language/annotations.html
[accessed 4 May 2010].

Swanson, E.F. (1976) ‘The dimensions of maintenance’ in Proceedings of the 2nd

International Conference on Software Engineering (IEEE), pp. 492-497,
cited in Robson, D.J., Bennett, K.H., Cornelius, B.J, and Munro, M. (1991)
‘Approaches to program comprehension’ in Journal of systems software, Vol.
14, pp. 79-84.

van Lamsweerde, A. (2001) ‘Goal-oriented requirements engineering: a guided tour’

in Proceedings of the Fifth IEEE International Symposium on Requirements
Engineering, Toronto, pp. 249-262.

 118

van Vliet, H. (2008) Software engineering: Principles and practice (3e), Chichester:
John Wiley & Sons.

von Mayrhauser, A., and Vans, A.M. (1995) ‘Program comprehension during

software maintenance and evolution’, in IEEE Computer, Vol. 28, Issue 8
(August 1995), pp. 44-55.

Wallace, C., Cook, C., Summet, J., and Burnett, M. (2002) ‘Assertions in end-user

software engineering: A think-aloud study”, in Proceedings of the IEEE 2002
Symposia on Human Centric Computing Languages and Environments
(HCC’02), pp. 63-65.

Watt, D.A., and Brown, D.F. (2000) Programming language processors in Java:

Compilers and interpreters, Essex: Pearson Education Limited.

Weisberg, H.F., Krosnick, J.A., and Bowen, B.D. (1996) An introduction to survey

research, polling, and data analysis (3e), Thousand Oaks, CA: Sage
Publications.

Yip, S.W.L, Lam, T., and Chan, S.M.K. (1994) ‘A software maintenance survey’ in

Proceedings of the First Asia-Pacific Software Engineering Conference,
Tokyo, Dec. 1994, pp. 70-79.

Yu, Y., Wang, Y., Mylopoulos, J., Liaskos, S., Lapouchnian, A., and Cesar Sampaio

do Prado Leite, J. (2005) ‘Reverse engineering goal models from legacy
code’ in Proceedings of the 13th IEEE International Requirements
Engineering Conference (RE’05), Paris, pp. 363-372.

 119

Bibliography

Lehman, M.M. (1980) ‘Programs, life cycles, and laws of software evolution’ in

Proceedings of the IEEE, Vol. 68, No. 9 (Sept. 1980), pp. 1060-1076.

Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., and Turski, W.M. (1997)

‘Metrics and laws of software evolution – the nineties view’ in Proceedings
of the 4th International Symposium on Software Metrics, Albuquerque, NM,
pp. 20-32.

Parikh, G. and Zvegintzov, N. (1983) Tutorial on software maintenance, Silver

Spring, MD: IEEE Computer Society.

 120

 121

Index

abstraction, 16, 19, 46, 55
agile methodologies, 88, 90
annotations, 48
ANTLR, 63, 64, 99
architecture, 31
artefacts

documentation, 18, 32
software, 43

Backus-Naur Form, 63
beacons, 44
bias, 97, 101

self-evaluation, 100
self-selection, 97
social desirability, 97

call graphs, 49
CASE tools, 49
Checkstyle, 51, 52, 91
cognitive models, 44
comments, 16, 20, 31, 32, 33, 34, 37,

46, 47, 51, 52, 54, 59, 70
class, 34
in-line, 34
method (function/procedure), 34

communication, 32
complexity metrics, 71, 109
comprehension quiz, 66, 109
concern graphs, 81
concerns, 81

cross-cutting, 86
constructive tools, 54
cost-saving measures, 15
debugging, 35
delocalised plans, 86
design entropy, 56
Design Intention Driven Programming

(DIDP), 69, 77, 103, 107
design intentions, 50, 54, 70, 104
diagrams, 49

class, 47
documentation

internal, 46
domain

application, 30
Doxygen, 32
Eclipse, 55
elucidative programming, 52
enterprise software, 15

ethics, 83, 84
external documentation, 27
flowcharts, 49
frameworks, 45
goals, 17, 73
information content metrics, 71, 109
integrated development environment

(IDE), 52, 53, 56, 61, 64, 74, 77, 78,
79, 81, 82, 144, 147, 170

intent specifications, 50
Intent-First Design, 53, 81
intention, 17, 39, 46
intention comments, 70, 80, 82, 86,

90, 103
abstract, 71

intention graphs, 73, 104
Intentional Programming, 53
interpretative tools, 54
Java with Intentions (JWI), 69, 77,

103
JavaCC, 64
Javadoc, 32, 47, 51, 52, 54, 80, 86, 91,

109
job frustration, 15
language evaluation criteria, 84
Literate Programming, 41, 50, 81, 107
maintenance, 27
maintenance developers, 15
maintenance developers, 20, 27, 80
managerial policies, 39
McCabe Cyclomatic Complexity

index, 71
models, 16
morale, 15
object-oriented documentation, 48
object-oriented programming, 45
Pattern Comment Lines, 47
patterns

design patterns, 45, 47, 71
instances (applications), 47, 48, 72,

88
peer review, 39
plans, 55

delocalised, 55
precompiler, 103
program comprehension, 16, 17, 27,

43

 122

bottom-up models, 45
opportunistic models, 45
top-down models, 44

program understanding, 16
project managers, 15
pseudocode, 80
quality, 27, 31, 32
questionnaire, 23, 28, 66, 97
rational design processes, 57
rationale, 17, 18, 39, 46, 70, 91
reification

rationale, 54
reliability, 98
requirements, 73
requirements traceability, 91
research methods, 95
reuse, 91
reverse engineering, 16, 20, 40
round-trip engineering, 49

software evolution, 15
software maintenance, 15, 29
specifications

functional, 19, 31
requirements, 18, 31
technical, 19

srcDoc, 54
statecharts, 49
structured programming, 45
templating, 47, 70, 80
Test-Driven Development, 54, 56, 109
UML, 47, 49, 73, 91
validity, 101

measurement, 96
population, 96

visualisation tools, 20
waterfall model, 57
wiki, 109

 123

Appendix A: Extended abstract

 125

Designing and evaluating an intention-based
comment enforcement scheme for Java

Kevin Matz

Extended abstract of Open University MSc dissertation submitted 8 March 2011

Introduction

In large-scale enterprise software projects, a majority of the cost is expended during
the software maintenance phase of the project lifecycle, during which a system
undergoes continual adaptations to fix defects and meet changing requirements.

In order to understand where and how to make changes, maintenance software
developers need to read and understand the existing source code. This is a time-
consuming and error-prone activity, and much of the difficulty comes from trying to
reconstruct the intentions and rationale that the original developers had in mind when
they constructed the software.

Although reverse-engineering tools can help developers navigate and model
structures in existing systems, this dissertation asserts that explicitly recording
intention and rationale information during design and construction can reduce the
time spent on such program understanding effort in the maintenance phase, and
argues that a new technology-based solution is needed to better record intention and
rationale.

Method

This dissertation makes use of a two-part survey aimed at practicing software
developers involved in maintenance projects.

Part A of the survey collects data on participants’ experiences and difficulties in
software maintenance projects and solicits opinions on software documentation.

The results of the survey together with a literature review are then used to make the
case that significant problems exist and that these problems are best dealt with by
designing a new solution to aid in recording intention and rationale documentation.

A literature survey and examinations of past attempts at solutions are then used to
formulate requirements for an “ideal” solution of this type.

Based on the requirements, a design was formulated for a solution (discussed under
Results below), and a rudimentary prototype was created.

The design of the proposed solution was then evaluated by a number of analysis
methods, including determining the degree of fit against the requirements, comparing
it against other potential solutions, and discussing advantages and disadvantages.

 126

Part B of the survey asked participants to read a short article explaining the proposed
solution, and then solicited feedback on its perceived practicality and utility.

Results

The survey attracted 38 legitimate responses. Part A of the survey found that a
majority of respondents do report having experienced difficulties in software
maintenance, and, consistent with the results of similar surveys, it is established that
developers rely on program comments more than other types of documentation. On
this basis, a solution largely centred around internal documentation (program
comments) is sought.

A list of 28 requirements is generated from the review of program comprehension
literature and examination of past attempts at solutions.

A partial solution, an approach tentatively named Design Intention Driven
Programming, is proposed. Under this approach, developers are encouraged to
record their design intentions before writing code artefacts. The main feature of this
approach is the addition of intention comments as specialised, first-class
documentation constructs to programming languages; the compiler flags as errors
any classes or other artefacts that are not described by intention comments.

To prevent empty or insufficient comments, the compiler computes a complexity
metric for a section of code, and then computes an “information content metric” for
the corresponding description text. An error is generated if the content of the
description is deemed insufficient for the complexity of the code it describes,
according to a threshold ratio that can be customised for each project.

Intention comments have object-oriented features that allow templating opportunities
that are particularly suitable for explicitly documenting instances of design patterns.

Applying the Design Intention Driven Programming approach to Java results in the
tentatively-named Java with Intentions language. A rudimentary prototype of a
precompiler supporting the language is constructed, and a sample application is
developed using the language. These serve as proofs of concept for the approach.

An example of the intention comments syntax in Java with Intentions is given below.

 127

intention QuizStateIntention {

 description {
 Class QuizState maintains the state of the current quiz, i.e., the current
 session in which all of the flashcards in a flashcard set will be presented
 once. This class is responsible for keeping track of the current flashcard,
 the user's score, and the application's mode (whether a game is in progress
 or is stopped).
 }

 requirementsreference[] satisficesRequirements = {
 EachFlashcardPresentedOncePerQuizSession,
 KeepScore
 };

 intentionreference playsRoleInPattern = FlashcardTrainerMVCPatternInstance;

}

public class QuizState implementsintention FlashcardTrainerMVCPatternInstance,
 QuizStateIntention {
 ...
}

The language also allows goals and requirements to be documented within code, and
these can be interlinked with intention comments to form rich graphs describing the
design of a software system at multiple levels of abstraction. A subset of such an
“intention graph” is shown below using modified UML class diagram notation.

 128

Analysis and discussion

Part B of the survey showed that respondents’ opinions are divided on the perceived
feasibility and utility of the proposed approach. While 86 percent of respondents
agree with the general practice of recording design intentions before writing code, 51
percent view the solution as being potentially practical in real-world projects, and 49
percent indicate a willingness to use the solution on a trial basis, approximately 20 to
25 percent of respondents express strong dislike of the solution. An analysis shows
that those favouring the solution are those who express strong support for
documentation in general, and as self-selection bias means that such individuals
likely comprise a disproportionately large percentage of the survey respondents, the
opinions of this group cannot be considered entirely representative of the population
of software developers as a whole.

A number of serious issues with the solution were identified, the most critical of
which include:

• the general resistance of developers to write documentation;
• the increase in workload required to write and maintain the intention

documentation;
• limitations of the documentation enforcement mechanism (it is unable to

check the correctness of documentation, and the mechanism that attempts to
enforce the sufficiency of descriptions can be easily bypassed); and

• the lack of concrete evidence of long-term cost savings.

The evaluation suggests that, while the approach may be promising for some projects
and teams, the lack of evidence for the purported benefits, the cost of writing the
documentation, and the unpopularity of writing documentation with most developers
render it impractical for typical commercial software projects.

Follow-up studies are required to investigate the solution’s impact on program
comprehensibility and long-term cost savings; a survey is unable to provide direct
empirical evidence to address these issues, and the research methods needed to
investigate these issues were not considered feasible within the scope of this research
project.

 129

Appendix B: Design Intention Driven
Programming and Java with Intentions

B.1 Introduction

Design Intention Driven Programming (DIDP) is an approach to programming that
encourages software designers and developers to follow a process of producing a
detailed technical design before constructing source code artefacts. This approach is
supported by a tool: a small set of extensions that can be added to an existing
programming language, and a compiler or other language processor which accepts
programs written in the new language.

The approach permits the construction of a technical design as a structured network
of units of documentation containing descriptions of the developer’s design
intentions and rationale. This network of documentation is stored in constructs in the
program’s source code files, and is intended to aid maintenance developers by
reducing the amount of time and effort required to understand how the program
works and why it was designed in that particular way.

In this dissertation, the Java programming language is extended to form a language
tentatively named Java with Intentions (JWI).

DIDP and JWI together enable a pragmatic form of literate programming.
Developers can record their design intentions within their program code by using
special object-oriented constructs in the language designed specifically for that
purpose11, and these constructs can be interlinked to form rich structures, hierarchical
or otherwise, representing the design of the program in terms of the relationships
between goals, requirements, program structures and abstractions, and concrete code
elements.

B.2 The role of intentions in programming and the
case for special constructs to record
intentions

When a programmer is about to write a component of a software program, he or she
first makes a mental plan of what the component is intended to do and how it will
work – in other words, the design of the component. Sometimes there is a rationale
behind this plan – a reason why this design was chosen over any alternatives. The
plan and rationale describe what the programmer is intending to do, and we can call
this the programmer’s design intention.

11 It could be said that design intentions have been “reified” under this scheme. Reification is defined
as “[considering] or [making] an abstract idea or concept real or concrete” (Collins English
Dictionary, 2003), or “[regarding] or [treating] an abstraction as if it had concrete or material
existence” (American Heritage Dictionary, 2009).

 130

As a trivially simple example, the requirement for a simple program may be to
calculate the sum of numbers between 1 and 10. The programmer’s intention, then,
may be to satisfy that requirement by writing a loop that iterates from 1 to 10 and
increments a running total with the current number in the loop. If the programmer
then writes Java code such as:

Figure 11: Correct implementation of the “sum of numbers between 1 and 10” intention

int runningTotal = 0;
for (int i = 1; i <= 10; i++) {
 runningTotal += i;
}

then the intention has been carried out correctly. If, however, the programmer had
mistakenly written:

Figure 12: Incorrect implementation of the “sum of numbers between 1 and 10” intention

int runningTotal = 0;
for (int i = 1; i < 10; i++) {
 runningTotal += i;
}

then the intention has not been implemented correctly, as the loop will actually
calculate the sum of numbers from 1 to 9. While the code at first glance may not
appear to be incorrect, and it compiles correctly, it is nevertheless incorrect, in the
sense that it does not match the requirements.

If the intention behind a piece of code is not explicitly documented, it is often not
obvious that the code is incorrect. If a reader were to come across Figure 12 in a
large and complex software system, the reader would probably have no way of
knowing that the original intention was actually to sum the numbers from 1 to 10,
unless he or she had an understanding of the requirements and the context of the
application – not always possible for new members of a software team.

In complex systems, without an explicit recording of intentions, code that looks
plausible but is in fact incorrect can remain in systems for long periods of time and
cause incorrect results or side effects.

It is also time-consuming for developers to read and understand the meaning of code
whose intention is not explicitly documented.

Ideally, then, the programmer would write a comment to record his or her intention,
enabling a later reader to check whether the intention matches the implementation:

Figure 13: Source code section with intention documented via a simple comment

/* Calculate the sum of integers between 1 and 10: */
int runningTotal = 0;
for (int i = 1; i <= 10; i++) {
 runningTotal += i;
}

 131

For this trivially simple example, the problem has been solved with a simple
comment. There are a couple of problems with traditional comments in existing
programming languages, however:

• Comments are optional, and many programmers simply don’t use them.
• While small pieces of code can be documented with comments as in the

example above, it doesn’t scale well for documenting larger-scale design
issues and architectural decisions that affect many parts of the system.
“Delocalised plans” (Soloway, 1986) – structures or implementations of
features that involve code spanning multiple files – are particularly difficult
to document using comments.

In current programming languages, comments are a “second-class” linguistic
element: comments are collapsed to single tokens and eliminated during lexical
analysis. A program containing no comments will compile just as well as a program
containing good explanatory comments. In the DIDP/JWI approach, the reasoning
behind the design and construction of the program is considered to be just as
important as the code itself. Hence, the idea is to add specialised constructs as an
integral part of the language, elevating the documentation of intentions to the status
of a “first-class citizen” in the programming language.

The constructs added to the language to aid in recording intention and rationale
information are termed intention comments. Intention comments share much of the
same purpose as traditional comments in programming language – communicating
and explaining intent – but intention comments are a much richer construct that can
contain multiple text fields as well as fields that can reference either other intention
comments or other types of program elements.

The use of intention comments can enable the following advantages:

• The use of intention comments can be enforced by the compiler.
• Documentation can be structured according to object-oriented principles.
• Instances of design patterns can be explicitly documented.
• The technical design of a program can be formed and documented at multiple

levels of abstraction as a graph of intentions.

We will explores these advantages briefly in the following subsections, after which
we will explore the syntax of the Java with Intentions language extensions.

B.2.1 Documentation enforcement

Any attempts to enforce documentation would, ideally, encompass the following
aspects:

1. presence of descriptions of intention and/or rationale
2. sufficiency of the descriptions
3. correctness of the descriptions

The introduction of the intention comment construct allows the compiler to enforce
the presence of those constructs: if the language expects an intention comment to be

 132

present for each class definition, for example, the compiler will simply generate a
compiler error if the expected intention comment is missing.

Enforcing sufficiency and correctness of documentation using technological
solutions is rather more difficult. It is impossible with current technology for a
software program to comprehend and reason about natural-language (e.g., English)
prose, so some automated checking of the correctness of descriptions in intention
comments is unfortunately out of the question.

Testing for the sufficiency of descriptions is also difficult, not only because
descriptions are written in natural-language prose, but also because the concept is
completely subjective: the background knowledge of different readers will impact
their judgements of whether a description is sufficient to explain some phenomena.
However, we can make an imperfect attempt to address the issue of sufficiency by
crude use of quantification and metrics. Using an algorithm, the compiler can
calculate a complexity metric for some section of code, and then using another
algorithm, the compiler can calculate a metric that quantifies the “information
content” of the descriptive text associated with that section of code. If the ratio of the
information content metric to the code complexity metric falls below a certain
threshold, the description would be deemed insufficient to describe the code, and a
compiler error would be generated. Threshold ratios would be configurable in each
project.

This dissertation does not select or develop algorithms for complexity and
information content metrics, nor does it make any recommendations for suitable
threshold ratios (which may vary depending on the combinations of algorithms
selected). These are topics suitable for a follow-up investigation. The McCabe
Cyclomatic Complexity index is one example of a metric that could be used to
measure the complexity of code within methods. The simplest information content
metric is simply a count of characters. More advanced algorithms might compute
scores by employing any number of techniques, such as parsing the grammatical
structure of sentences, using dictionaries to recognise words, computing readability
statistics, or using trainable neural networks or Bayesian statistical techniques to
distinguish legitimate descriptions from garbage (similar to spam filtering).

B.2.2 Structuring documentation according to object-
oriented principles

Intention comments resemble class definitions and can contain text fields as well as
references to other intention comments or other code elements. The objected-oriented
principle of inheritance can be applied to intention comments, and this allows
developers to strategically re-use basic descriptions as templates, avoiding
duplication of descriptions of similar but non-identical structures and aspects. An
object-oriented style of documentation is a natural and effective way to describe
object-oriented structures in programs.

In JWI, intention comments can use the extends keyword to inherit the descriptions
and fields from another intention comment. Intention comments can also be declared
abstract, which allows the specification of text or reference fields that then must be
filled out by any derived intention comments that are not also abstract.

 133

B.2.3 Explicitly documenting instances of design patterns

Design patterns are collections of collaborating classes and/or objects. Design
patterns can be documented in a pattern catalogue, but instances (also called
applications) of patterns in source code do not have any explicit “tangible” form
beyond the particular collection of constituent classes or objects. Phrased differently,
there is usually no easy way to search a source code collection to locate all instances
of any particular pattern, because pattern instances are not named and don’t have any
artefact or construct of their own.

Intention comments allow the reification of design pattern instances: for each
instance of a design pattern, an intention comment can be created and named, and all
of the classes or objects participating in that design pattern instance can link to the
intention comment. This allows a reader stumbling upon one of the constituent
classes or objects firstly to understand that a particular design pattern is in use, and
secondly to understand the role that the particular class or object plays in the design
pattern instance.

The object-oriented nature of intention comments is particularly suitable for
explicitly documenting instances of design patterns. An abstract intention comment
can be created to describe a general design pattern, such as the Model-View-
Controller pattern. Then, each instance of that design pattern can extend the abstract
intention comment to form its own specific intention comment describing the context
of that particular design pattern instance. An example will be presented in section
B.4.

B.2.4 Formulating and documenting software designs as
graphs of intentions

The ability of intention comments to contain references to other intention comments,
and the ability to create inheritance hierarchies of intention comments, allow the
construction of graphs of intention comments that can richly represent the design of a
software system at multiple levels of abstraction.

This is a key difference between traditional comments and intention comments.
Traditional comments are typically short remarks that usually relate only to the
contents of the particular source code file they are located in. We might describe
traditional comments as being “flat”. Intention comments, in contrast, can be
declared alongside program code in source code files, but they can also exist by
themselves in source code files that contain no actual “executable” source code. This
is suitable for describing higher-level structures and abstractions (such as design
pattern instances) that span multiple source code files, as well as requirements, goals,
and design intentions that apply to the entire system as a whole.

The Design Intention Driven Programming approach argues that, in principle, the
design for a software system could be formed entirely of intention comments
arranged in a series of layers, with interlinking between intention comments in each
pair of adjacent layers:

 134

• High-level goals
• Requirements
• Units of desired functionality (which may include references to external

functional specification documents)
• High-level architectural design
• Fine-grained technical design (e.g., program structures and patterns)

Program code would then include references primarily to intention comments in the
last layer, but could also refer to intention comments at higher levels. Elements in the
code could then be easily traced back to design intentions and requirements.

This approach will be demonstrated with the sample Vocabulary Trainer application
presented in Appendix D.

B.3 Introducing a syntax for intention comments
in the JWI language

There are two basic forms of intention comments:

1. Free-standing
2. Inline

B.3.1 Free-standing intention comments

Free-standing intention comments are defined using the intention keyword, and
must be named. Free-standing intention comment definitions are declared within
Java source code files. They are usually situated within the file after any import
statements, but before the first class definition. However, intention comments can
also be included inside a class definition if the intention will be describing a method
within that class.

Figure 14 gives an example of an intention comment named FlashcardIntention.

Figure 14: A simple intention comment

intention FlashcardIntention {

 description {
 The Flashcard class represents a flashcard for learning foreign-language
 vocabulary. A flashcard has a cue on one side of the card, and a list of
 one or more acceptable answers on the other side of the card.
 }

}

In general, intention names do not need the suffix “Intention”, but it is used in this
case because the identifier Flashcard will be used by the class of that name.

The keywords goal and requirement can be used in place of intention for
intentions that are better classified as one of those types, as shown in Figure 15.

 135

Figure 15: Intention comments declared using keywords goal and requirement

goal FlashcardTrainerMainGoal {

 description {
 To provide an application to help a user learn foreign language vocabulary
 using flashcards.
 }

}

requirement WindowsCompatibility {

 description {
 The application must be able to operate under the Microsoft Windows
 operating system.
 }

}

The general term intention comment refers to elements declared using the goal,
requirement, or intention keywords.

Text fields

Within a goal, requirement, or intention definition, one or more text fields can
be included.

The description field is mandatory for all intention comments, and within braces, a
textual explanation of the goal, requirement, or intention should be provided. The
explanation is written in plain text; HTML tags can be used for markup.

Other ad-hoc text fields can be declared by specifying an identifier name (according
to the standard Java language rules) and then placing text in braces after it. Figure 16
illustrates the use of a fitCriteria text field.

Figure 16: Adding a text field to an intention comment

requirement WindowsCompatibility {

 description {
 The application must be able to operate under the Microsoft Windows
 operating system.
 }

 fitCriteria {
 1. A Windows-compatible installer is provided.
 2. The product can be installed and the product will start on machines
 running English-language Windows 98, ME, 2000, XP, Vista, and 7.
 }

}

 136

Referring to intentions

Once an intention has been documented, the developer can then construct or update
the classes or methods needed to implement that intention.

To link a class to one or more named intentions, the implementsintention
keyword is used in the class definition as shown in Figure 17.

Figure 17: Linking a class to intention comments

class Flashcard implementsintention FlashcardIntention {

 ...

}

Multiple intention names can be separated by commas.

It is preferred to have classes link to intentions, rather than directly to goals or
requirements; the intention should serve as an intermediary to explain how a goal or
requirement is to be implemented. However, if a class needs to link directly to a goal
or requirement, the keywords implementsgoal and implementsrequirement are
also provided. These can be combined as shown in Figure 18.

Figure 18: Linking a class to multiple intentions, requirements, or goals

class FlashcardSet implements Serializable
 implementsintention FlashcardSetIntention, FlashcardSetFileFormat
 implementsrequirement LoadSetOfFlashcards, ShuffleFlashcards
 {

 ...

}

Methods can also use the implementsintention, implementsrequirement, and
implementsgoal keywords to signal that the method fulfils or “satisfices”
(contributes to satisfying) an intention, requirement, or goal. An example is given in
Figure 19.

 137

Figure 19: Linking a method to an intention, requirement, or goal

class QuizFrame implementsintention FlashcardTrainerMVCPatternInstance,
 QuizFrameIntention
{

 ...

 public void presentCue(Flashcard flashcard) implementsrequirement
 PresentCueAndAcceptAndCheckAnswer {

 ...

 }

 ...

}

The Java with Intentions system requires all classes to refer to at least one intention;
a compiler error will be generated if a class does not have at least one intention to
describe it. (Note that references to requirements and goals cannot be used to bypass
this requirement.) Methods can refer to intentions, and this is encouraged, but at
present it is not mandatory; however, future Java with Intentions implementations
might make this configurable.

Inheritance

In object-oriented programming languages, a “subclass” B can extend a “superclass”
A, and by so doing, class B inherits all of the properties (in Java, the methods and
member variables) of class A. Class B can introduce new properties or override the
inherited properties.

Intention comments permit inheritance using the extends keyword, as illustrated in
Figure 20. All of the fields in the “superclass” intention comment are considered to
apply to the “subclass” intention comment, unless that intention comment overrides
those fields.

Figure 20: Inheritance of intention comments using the extends keyword

intention GeneralUserAuthorizationStrategy {

 description {
 Before access will be granted to a function, the system will check
 an authorization table to determine whether the user is permitted to
 access the function.
 }

}

intention AuthorizationStrategy extends GeneralUserAuthorizationStrategy {

 specificDetails {
 Each user will be assigned to one or more of the roles in the ROLES
 table. The PERMISSIONS table will list the functions permitted for
 each role. ...
 }

}

 138

Abstract intentions

In object-oriented analysis and design, it is often the case that a number of similar
classes have a number of attributes in common. The common attributes can be
extracted to a superclass, and the individual classes can then extend the superclass to
avoid repeating the common attributes. If the superclass is not designed to be
instantiable, it can be declared as abstract.

Intention comments can also be declared abstract using the abstract keyword. The
abstract keyword is usually applied to intentions, but it can also be applied to
goals and requirements as well. This is illustrated in Figure 21.

Figure 21: Declaration of abstract intention comments representing requirements

abstract requirement FunctionalRequirement {
 description {
 Functional requirement.
 }
}

abstract requirement NonFunctionalRequirement {
 description {
 Non-functional requirement.
 }
}

requirement ShuffleFlashcards extends FunctionalRequirement {
 description {
 The application shall randomize (shuffle) the flashcards in the
 flashcard set so that the user is not presented with the same sequence
 of cards each time.
 }
}

requirement UseGUI extends NonFunctionalRequirement {
 description {
 The application shall use a graphical user interface.
 }
}

Abstract intention comments cannot be referred to directly by classes or methods. Of
course, classes or methods can refer to “concrete” (non-abstract) intention comments
that have been derived from abstract intention comments.

Abstract intention comments allow empty text or reference fields to be specified
which then must be filled out by any non-abstract intention comments that extend it.

Reference fields

An intention comment can refer to other intentions, requirements, or goals.
References are handled similarly to variable declarations in classes and methods;
each reference field must take a name, and the following “data types” are offered:

• intentionreference
• requirementreference
• goalreference

 139

While it is generally preferred that classes and methods link to intentions, intentions
can also link to specific classes, methods, or even objects (using fully-qualified
identifiers) using the following data types:

• classreference
• methodreference
• objectreference

These data types are used for referring to a single intention, requirement, goal, class,
method, or object by name. In many cases, it is suitable to have a reference field refer
to multiple elements, so in such cases it is permissible to use the array notation “[]”
after the data type name. This permits a list of intentions, requirements, goals,
classes, or objects to be listed, separated by commas, and surrounding with braces.

Fields in abstract intention comments do not need to provide values; fields in non-
abstract intention comments must provide values, though null and “{}” (an empty
list) are permitted. Assignment of values uses the “=” operator. Field declarations are
terminated with a semicolon.

Examples of the syntax are illustrated in Figure 22.

Figure 22: Examples of single and set reference fields in an intention comment

intention OpenFlashcardSetThroughFileMenu {

 description {
 To open a flashcard set and start a new quiz session, the user can use the
 File | Open... option. This will launch an "Open Flashcard Set" dialog which
 allows the user to select a file with the .fcs filename extension.
 }

 requirementreference satisfiesRequirement = LoadSetOfFlashcards;

 intentionreference[] seeAlso = { PullDownMenus, FlashcardSetFileFormat };

 methodreference[] fileHandlingImplementedInMethods = {
 FlashcardSet.readFromFile(File),
 FlashcardSet.writeToFile(String)
 };

}

Naming scope

Intention comments can be declared in any .java source code file12, and these names
of intention comments have global scope and visibility across the project. A compiler
error will be generated if two intention comments are declared with the same name in
the same project.

Classes and methods using the implementsintention keyword can refer to
intention comment names declared anywhere else in the project; qualification with
package names is not necessary.

12 In the prototype precompiler implementation, Java with Intentions source code files have the
extension .jwi. The precompiler processes .jwi files by stripping out all instances of Java with
Intentions language extensions and generates corresponding plain .java files.

 140

References in intention comments to classes, methods, or objects must use fully-
qualified identifier names with the full package path (e.g.,
com.sampleprojects.flashcardtrainer.QuizFrame) to refer to any entities
outside of the scope of the package in which the intention comment is declared.

B.3.2 Inline intention comments

Within a method, lengthy blocks of code without any descriptive comments will be
flagged by the JWI compiler. To associate comment texts with blocks of code, a
syntax is provided for “inline intention comments”, which consist of start and end
tags that can surround blocks of code. The start tag includes the comment text. The
use of start and end tags allows inline intention comments to be nested, allowing
each step of an algorithm to be broken into smaller sub-steps.

Figure 23 illustrates the syntax for inline intention comments in JWI.

Figure 23: Example of syntax for nested inline intention comments

[[1 | Shuffle the deck of flashcards (flashcardList) by iterating
 through the list and swapping the card at the current position
 with another randomly-chosen card]]
for (int i = 0; i < flashcardList.size(); i++) {
 [[1.1 | Generate a random number, which will serve as the index
 of the card to be swapped with the current index]]
 int otherIndex = randomGenerator.nextInt(flashcardList.size());
 [[/1.1]]

 [[1.2 | Swap the records at indices i and otherIndex]]
 Flashcard tempCard = (Flashcard) flashcardList.get(i);
 flashcardList.set(i, flashcardList.get(otherIndex));
 flashcardList.set(otherIndex, tempCard);
 [[/1.2]]
}
[[/1]]

“Opening” comment tags take the syntax [[commentIdentifier |
descriptionText]] (where the square brackets and vertical bar are literal
characters). The comment identifiers could be virtually any names, but in this
example they follow a hierarchical numbering scheme. “Closing” comment tags use
a slash in front of the comment identifier, similar to XML.

B.4 Documenting instances of patterns using
intention comments

As discussed previously, the object-oriented nature of intention comments lends
itself to documenting instances of design patterns via a templating mechanism.

In Figure 24, an abstract intention comment is created to describe the common
Model-View-Controller pattern.

 141

Figure 24: An abstract intention defining a general design pattern

abstract intention ModelViewControllerPattern {

 description {
 The Model-View-Controller pattern structures the user interface
 code into separate components. This separation of concerns helps
 improve understandability and modifiability.

 The model consists of a representation of the application's data.
 The model notifies listeners (typically, one or more view
 components) when the data changes.

 The view component presents the data to the user in the form of
 UI components. Multiple views based on the same model may exist.

 The controller acts upon input from the user and updates the
 model and/or interacts with the view.
 }

 classreference[] modelClasses;
 classreference[] viewClasses;
 classreference controllerClass;

}

A specific instance or application of the Model-View-Controller pattern can then be
specified by declaring an intention comment that extends this abstract intention. In
the new intention comment, references must be provided for the required fields.
Figure 25 shows an intention comment for the specific MVC pattern instance used in
the sample Vocabulary Trainer application.

Figure 25: A concrete intention extending the abstract pattern definition to specify a particular

instance of the pattern

intention FlashcardTrainerMVCPatternInstance extends ModelViewControllerPattern {

 description {
 The flashcard trainer user interface is constructed according to the
 Model-View-Controller pattern.
 }

 modelClasses = { QuizState, FlashcardSet };
 viewClasses = { QuizFrame };
 controllerClass = QuizController;
}

The components that take part in this pattern can then link themselves to the
intention for the pattern instance; one such example is given in Figure 26.

Figure 26: A component of the pattern instance links itself to the intention comment for the
pattern instance

class QuizController implementsintention FlashcardTrainerMVCPatternInstance,
 QuizControllerIntention {
 ...
}

Now, when new developers join this project and encounter any class that is a part of
this pattern instance, they will be able to read the comments and follow the links to
locate the other components of the pattern and understand their relationships. A

 142

developer who was not previously aware of this design pattern can follow the links
and read the descriptions to gain a better understanding.

B.5 Using graphs of intention comments to
represent the design of a system

The primary advantage of the Design Intention Driven Programming approach is that
intention comments can be interlinked into graphs that represent the design of a
software system at multiple levels of abstraction.

Traditionally, the architecture and design of software systems is written in word-
processing documents and augmented with diagrams. The typical hierarchical
chapter structure of traditional documents, however, typically does not match the
more complex structure of software systems.

With intention comments, the conveniences and rich structuring possibilities of the
object-oriented approach are extended to the documentation domain. The design for
a system can be broken into small units of textual descriptions, and these units
(intention comments) can be interlinked and can take advantage of the inheritance
mechanism. Instead of a hierarchical document with no direct linkages to the
software code, a “web”-style graph of navigable documentation units with direct
links to the software code elements being described can be constructed. A well-
written graph of intention comments has the potential to be much more useful to
current and future developers.

Seen from a distance, typical graphs might have roughly pyramidal arrangements,
with a small number of goals at the top level, followed by a greater number of
requirements, and then a large number of intentions, which are linked to potentially
an even greater number of code artefacts. While intention graphs could take a true
hierarchical form in very small systems, the interlinking between elements at each
level and in between the levels, however, means that a more complex graph will
emerge in non-trivial systems.

B.5.1 Graphical representation of intention graphs with
UML

UML class diagrams, with some minor adjustments, can be repurposed to represent
intention graphs. Figure 27 illustrates one possible depiction of the intention graph
involving the Model-View-Controller pattern in the Vocabulary Trainer sample
application.

 143

Figure 27: UML class diagram representing the intention graph for the Model-View-Controller
pattern instance in the Vocabulary Trainer sample application

Figure 28 illustrates a more complex intention graph depicting one goal, several
requirements, a number of intentions, and classes and methods linked to the
intentions. To save space, the actual description texts of the intentions have been
omitted, which obviously limits the utility of the diagram. Some liberties have been
taken with the notation in this diagram: because UML does not support the depiction
of methods as self-standing entities, methods that need to link to intentions have been
represented using Note elements.

 144

Figure 28: UML class diagram for the subset of the intention graph for the Vocabulary Trainer
application relevant to the loading of flashcard set files

B.5.2 Navigation between intention comments in an IDE

While the entire intention graph for a software system could be represented as a
UML diagram, the diagram would become unmanageably large for any non-trivial
system. Even omitting the actual description texts of the intentions, the intention
graph for the relatively small Vocabulary Trainer application will not fit legibly on a
single sheet of paper.

This is one major reason why intention comments were conceived of as a language
element rather than a purely graphical modelling element.

In the ideal, fully-realised form of the Design Intention Driven Programming
approach, developers would work with an Integrated Development Environment
(IDE) such as Eclipse that has been customised with integrated support for the Java
with Intentions language13. The IDE would support easy navigation between
intention comments and their references using hypertext-like links.

13 Please note that the prototype implementation constructed for this dissertation includes only a
precompiler; IDE integration has not been implemented due to time constraints.

 145

Currently in Eclipse, for example, a developer can position the cursor on an identifier
name and press the F3 key (or press the Control key and click on an identifier
name)14, and the screen will shift focus to display the place in the code where that
identifier is defined. The same gestures and behaviours would be supported for Java
with Intentions language constructs. For example, if a developer were to encounter
the method signature “public void handleEndOfQuiz() implementsintention
DisplayScopeInPopUpDialog”, the developer could control-click on the identifier
DisplayScopeInPopUpDialog to navigate directly to the place in the source code
where the intention comment named DisplayScopeInPopUpDialog is defined.

B.6 Generating hypertext documentation and the
relationship between Java with Intentions and
Javadoc

It is envisioned that a tool similar to the javadoc tool would be constructed to
generate hypertext documentation sets as a set of HTML pages.

Unlike javadoc, which does not output the actual source code, a documentation
generator for Java with Intentions would have to include the entirety of the project’s
source code in the output documentation, as the intentions are intimately linked with
the source code (and inline intentions exist only within the context of source code
inside of methods).

Intention comments and Javadoc comments can coexist within the same project.
Because there is some degree of overlap between intention comments and Javadoc
comments, a project team should consider whether to use Java with Intentions
exclusively or to use it with Javadoc in a complementary fashion.

Javadoc’s generated hypertext documentation is most suitable for documenting APIs
that expose classes and methods for public consumption, and so for frameworks and
libraries, it is recommended that Javadoc be used so that the traditional Javadoc
reference documentation can be published without exposing the source code.

Javadoc is somewhat less effective for documenting the structure and functioning of
the “private” implementation behind the publicly exposed façade. Architectural
decisions, large-scale software structures (such as abstraction layers), cross-cutting
concerns, and design pattern instances can be arguably described better using
intention comments.

14 These gestures assume the standard key bindings on the Windows distribution of Eclipse.

 146

B.7 Responses to common objections and
questions

Why not use Java annotations instead?

Some aspects of the intention comments could indeed be represented with
annotations. However, the object-oriented nature of intention comments would be
awkward to reproduce (annotation definitions but not annotation instances can use
the inheritance mechanism), and the integrity of cross-references to other annotations
or other program elements cannot be checked by the compiler. Annotations are not
mandatory, so enforcement would be impossible. There would also be awkward
syntax issues to deal with: multi-line text strings would have to be quoted.

Annotations were not designed for the express purpose of recording design
intentions. A construct purposely designed to support the concept is more suitable.

What is the relationship of intention comments to external specification
documents?

Traditionally, requirements are managed either in documents or in specialised
databases, and architectural designs, functional specifications, and technical
specifications are written as documents.

In a project where traditional documents have been already generated, developers
might choose to create goals, requirements, and intention comments in the source
code to match the existing documents. This would be inconvenient, however, as it
would lead to the same information being maintained in two places, and one would
have to be designated the master. The JWI system might itself be further extended to
be able to refer to requirements and documentation artefacts stored in external
repositories. In fact, a wiki-like documentation system could even be envisioned, and
intention comments in the source code would be able to refer to the documents or
articles by name. The JWI compiler would access the documentation system to verify
the references.

A project using Design Intention Driven Programming from the very beginning
might base all of the initial goals and requirements and architectural design (in terms
of high-level intentions) in the source code. These could then refer to external
documents that contain more information, especially in cases where there is a lot of
detail or numerous diagrams or tables that will not easily fit in intention comments.

Why not use a formal specification language like Z?

It is exactly in the translation from natural human-language thinking to symbolic
representation that encoding errors are most likely to occur and the intention behind
the symbolic representation is most likely to be lost – exactly the same problem as
translating from natural language to symbolic program code. Formal specification
languages are also not commonly used in industry except for safety-critical systems.

 147

Appendix C: The prototype Java with
Intentions precompiler implementation

C.1 An overview of how JWI programs are
processed

Java with Intentions (JWI) is an extension of the Java language as specified by the
Java Language Specification (Gosling et al., 2005). While the extensions could
generally be applied to any version of Java, this specification and the reference
implementation are based on Java version 1.5 (i.e., Java SE 5).

The JWI language extensions serve purely for the purpose of documentation. The
language extensions have no effect on the behaviour of a program.

Ideally, JWI source code would be stored in text files with the .java extension.
However, this would cause conflicts with existing tools that do not expect the JWI
language extensions. For that reason, JWI source code files are currently text files
with the extension .jwi.

A syntactically-valid .jwi file can be converted to a legal .java source code file by
simply stripping out (or commenting out) all instances of the JWI language
extensions (i.e., declarations of intention comments, references to intention
comments from classes and methods, and inline intention comments within
methods).

There are three classes of language processing tools that are conceivable for
processing JWI projects:

A. Native compilers that accept .jwi files and output Java .class files;
B. Precompilers that accept .jwi files and output .java source code files (by

stripping out instances of JWI language extensions); the .java files can then
be passed to the javac compiler to create Java .class files;

C. Integrated development environments (IDEs) that continuously parse the
source code in the editor and highlight syntax errors, and use either a
compiler of class A or a precompiler of class B to compile .jwi files to Java
.class files.

The prototype implementation is a precompiler of class B.

Processing tools of all classes must perform the following functions:

• Syntax checking: Validate that each .jwi file matches the language grammar.
• Context analysis: Check that references to and from intention comments are

valid, bearing in mind the scope rules specified in Appendix B.
• Stripping of instances of JWI extensions: Remove all instances of JWI

language extensions so that the file can be compiled as a plain .java source
code file.

 148

C.2 Scope of prototype implementation

Table 42 lists major functional requirements for the precompiler for the Java with
Intentions language, and indicates which of these requirements have been fulfilled in
the prototype implementation. Time constraints limited the functionality completed.

Table 42: Functional requirements defining the scope of the Java with Intentions precompiler
reference implementation

No. Requirement Planned for

implementation?
Implemented?

1 Precompiler must accept
from the command line a list
of *.jwi files to process

yes yes

2 For each input .jwi file, the
precompiler must output a
corresponding, translated
.java file

yes yes

3 Precompiler must output
*.java files into the
appropriate directory
structure dictated by the Java
package of each file

yes yes

4 Precompiler must strip out
or comment out all instances
of syntactically-valid
intention comments when
translating from *.jwi to
*.java files

yes yes, partially; working for
a limited subset of the
syntax

5 *.java files output by the
precompiler must conform to
Java 1.5 syntax and must be
compilable by the javac
compiler

yes yes, but requires further
testing

6 Precompiler shall report
understandable error
messages when a syntax
error is encountered in an
input file

yes partially; errors generated
by the precompiler’s
context checking are
acceptable; parser errors
generated by ANTLR are
passed through, and these
are less understandable

7 Should a syntax error be
detected in an input file, the
precompiler shall stop
processing that file, but shall
continue processing other
input files specified on the
command line

yes yes

8 Precompiler shall accept
intention definition blocks

yes yes

 149

No. Requirement Planned for
implementation?

Implemented?

9 Precompiler shall accept
requirement definition
blocks

yes yes

10 Precompiler shall accept
goal definition blocks

yes yes

11 Precompiler shall accept
implementsintention
clauses and omit them from
translated output

yes yes

12 Precompiler shall accept
implementsrequirement
clauses and omit them from
translated output

yes no (in progress)

13 Precompiler shall accept
implementsgoal clauses
and omit them from
translated output

yes no (in progress)

14 Precompiler shall report an
error if a Java compilation
unit (class, interface,
enum) is defined without an
implementsintention
clause

yes in progress; working for
classes but not yet tested
with interfaces and
enums

15 Precompiler shall verify that
the names of intention
comments referenced in
implementsintention,
implementsrequirement,
implementsgoal clauses are
defined within the project
(where “project” refers to
the list of .jwi files supplied
on the command line)

yes partially: yes, for
implementsintention;
no, for
implementsrequirement
and implementsgoal

16 Precompiler shall accept
inline intention comment
syntax and omit the opening
and closing comments from
translated output

yes partially; an alternative
syntax is temporarily in use
due to difficulties with
tokenisation involving free
text fields

17 Precompiler shall verify that
the identifiers in opening
and closing inline intention
comments match, and shall
observe nesting of inline
intention comments

yes no

18 Precompiler shall allow
declaration of text fields and
reference fields in intention
comments marked with the
abstract keyword

yes no

 150

No. Requirement Planned for
implementation?

Implemented?

19 Precompiler shall check that
non-abstract intention
comments that extend
abstract intention
comments fulfil all of the
required text and/or
reference fields

yes no

20 Precompiler shall check that
references from reference
fields to intention comments
names match

yes no

21 Precompiler shall check that
references from reference
fields to Java identifiers
(e.g., class names) match

no no

22 Precompiler shall compute
information content metrics
on intention comments

no no

23 Precompiler shall compute
complexity metrics on code
described by intention
comments

no no

24 Precompiler shall allow
specification of a threshold
for the information content
to complexity metric ratio

no no

25 Precompiler shall ensure that
all sections of code adhere to
the specified threshold

no no

C.3 Demonstration of current state of
implementation

Please refer to Appendix D for a walkthrough of the current state of the
implementation.

 151

Appendix D: Walkthrough of the
precompiler implementation and sample
application (Vocabulary Trainer)

The prototype precompiler and the sample application are bundled into the file
JWI_Deliverables.zip, which has been included with the electronic submission of
this dissertation, and which can be found on the CD-ROM included with the printed
copy of the dissertation.

Please unzip the file before proceeding. Path names in this section are relative to the
base directory of the unpacked archive.

D.1 Prerequisites for running the precompiler and
sample application

It is assumed that version 1.5 or higher of the Java SE SDK is installed on your
machine. Several shell scripts for building and running the precompiler are provided,
and executing these will require the use of the “bash” shell, which requires a
Unix/Linux environment. (CygWin may be used on Windows machines but this has
not been tested.)

To simply inspect the files, no special software is required as all source code files are
plain text files.

D.2 Inspecting the sample application

A sample application has been constructed to demonstrate the use of the Java with
Intentions language extensions, and to serve as a test case for the precompiler
prototype.

The project is a very rudimentary foreign-language vocabulary trainer application
that lets the user practise with sets of flashcards. The application uses Swing for the
user interface. A screenshot of the application presenting a quiz using a German-
English flashcard set is shown in Figure 29.

 152

Figure 29: Screenshot of Vocabulary Trainer application

Once the JWI_Deliverables.zip archive has been unpacked, the source tree for the
sample project, consisting of *.jwi files, can be found under path
JWI_DemoProject1/src-jwi/.

(If you wish to actually run the application, a pure Java version that is the same as the
JWI version but with all instances of JWI language extensions commented out is
provided under path JWI_DemoProject1/src/. An Ant build file has not been
constructed, but under Eclipse or other IDEs, the necessary files will be compiled
automatically if you run the main class, which is
JWI_DemoProject1/src/jwidemos/flashcardtrainer/FlashcardTrainer.java.
Once the application has started, select File | Open… in the menu and choose the
flashcard set file rsrc/FlashcardSets/German1.fcs.)

D.3 Inspecting the precompiler’s grammar files

The ANTLR grammar files are located under path
JWI_Precompiler/src_in/antlr/.

The Java.g file by Parr (2008), which is a grammar for the Java 1.5 language, was
used as a base and extended to support the JWI extensions. For technical reasons, the
original Java.g file had to be split into separate lexer and parser grammars:

• JWI_Precompiler/src_in/antlr/JWIPreprocessor_Lexer.g is the lexer
grammar, defining the fundamental tokens (lexemes) such as keywords and
operators.

• JWI_Precompiler/src_in/antlr/JWIPreprocessor_Parser.g is the
parser grammar, defining the syntax of language constructs.

 153

ANTLR grammars are based on production rules using Extended Backus-Naur
Form. However, within these production rules, Java code can be embedded which is
executed when the parser runs; this enables the parser to build data structures that
can be used in the context analysis phase, which takes place after the parsing phase.
For example, the production rule for the declaration of an intention comment
includes code to add the name of the intention to a symbol table.

Unfortunately, the Java code and other ANTLR-specific options embedded in the
production rules can make the grammar files hard to read. There is little separation of
concerns possible between the basic grammar and the processing that is triggered
when the parser encounters the tokens matching the production rules.

Due to time constraints, not all language features are implemented in the grammar
files and the precompiler code. Some temporary compromises with minor alterations
of the syntax were made in several cases where implementation problems are still
under investigation; most notably, the description keyword requires the use of
“double braces” (“{{ }}”) to surround free-form text instead of single braces as
shown in this dissertation. (The single braces are still the “ideal” syntax.)

Please refer to the statement of scope in Appendix C, which states which features
have been implemented and which have not. Instances of language features not yet
supported have been commented-out in the sample Vocabulary Trainer project.

D.4 Inspecting the remainder of the precompiler
code

The shell scripts JWI_Precompiler/make-lexer-grammar.sh and
JWI_Precompiler/make-parser-grammar.sh15 invoke the ANTLR tool to convert
the two grammar files described in the previous section into the Java files
JWIPreprocessor_Lexer.java and JWIPreprocessor_Parser.java, which are
located under path
JWI_Precompiler/src_in/java/com/kevinmatz/jwi/parser/.

JWIPreprocessor_Lexer.java and JWIPreprocessor_Parser.java form the core
of the parsing stage of the precompiler, but further Java code is necessary to parse
command line parameters, handle context analysis logic, and write the output .java
files to disk.

All of the Java code for the precompiler is located under
JWI_Precompiler/src_in/java/. The main class is
JWI_Precompiler/src_in/java/com/kevinmatz/jwi/JWIPreprocessor.java.

To compile the entire precompiler project, use the shell script
JWI_Precompiler/make-javac.sh. This invokes javac to build the .class files
under path JWI_Precompiler/executables/.

15 Build management with Ant was planned but did not materialise due to time constraints.

 154

D.5 Running the precompiler using the sample
application as input

The sample Vocabulary Trainer application, consisting of *.jwi files, is located under
JWI_DemoProject1/src-jwi/.

To run the precompiler on the sample application, run the shell script
JWI_Precompiler/run-precompiler-on-flashcard-demo.sh. It simply invokes
the preprocessor executable, supplying the *.jwi filenames and an output directory as
command-line parameters.

Normally the preprocessor runs silently, generating output on the console only when
syntax or contextual errors are detected. For debugging purposes, however, the
precompiler currently generates console output as shown in Figure 30.

Figure 30: Console output from JWI precompiler

In this case, no errors have been detected, and all of the input files, i.e., all *.jwi files
under JWI_DemoProject1/src-jwi/, have been translated into corresponding Java
source code files (under the same package structure of subdirectories) under
JWI_Precompiler/tmp/generated_java/.

 155

To illustrate the generation of an error message, one of the intention references in an
input .jwi file was replaced with the name of a fictional intention comment name not
defined in the project. Figure 31 shows the error message reported in this case.

Figure 31: Console output showing a contextual analysis error detected by the JWI precompiler

If the precompiler has run successfully without generating any errors, a set of
generated .java output files will have been created in a directory specified by a
command-line parameter. In the generated output files, all instances of intention
comments and reference clauses are commented out, as shown in Figure 32.

Figure 32: Output file QuizState.java generated by commenting-out JWI constructs present in

the input file QuisState.jwi

QuizState.java
package jwidemos.flashcardtrainer;

import java.util.List;

/* intention QuizStateIntention {

 description {{
 Class QuizState maintains the state of the current quiz, i.e., the current
 session in which all of the flashcards in a flashcard set will be presented
 once. This class is responsible for keeping track of the current flashcard,
 the user's score, and the application's mode (whether a game is in progress
 or is stopped).
 }}

} */

public class QuizState /* implementsintention FlashcardTrainerMVCIntention,
QuizStateIntention */ {

 156

… remainder of file …

Generated Java source code files can then be compiled with javac. Unfortunately,
because the precompiler does not yet support all JWI language features, instances of
those unsupported features will not be suppressed in the .java output files, so not all
generated .java files currently will compile with javac.

 157

Appendix E: The questionnaire and
summary statistics

Introduction page

Thank you for taking the time to answer this questionnaire.

This research is being conducted by Kevin Matz as a part of his thesis16 for an MSc
in Software Development at the Open University (Milton Keynes, UK).

It is assumed that you are a practicing software developer, and programming is one
of your major responsibilities. If this does not describe your situation but you still
wish to take part, please contact Kevin at kevin@kevinmatz.com.

This questionnaire has two parts. In part A, you will be asked about your opinions on
software documentation and program comments, practices at your current
organization, and any difficulties you may have encountered during software
maintenance activities.

In part B, you will be asked to read a short article introducing a proposed new
approach to in-program documentation. You will then be asked for your opinions
and any feedback on this approach.

If a question does not apply to your personal situation, or if you prefer not to answer,
please leave that question blank. An empty response to a question will be treated as
"not applicable".

Your responses to this questionnaire are anonymous and no personally identifying
information will be stored.

Please do not complete the questionnaire more than once.

Thank you -- your participation is very much appreciated!

[Survey version 1.1]

Part A, Page 1 of 6

The following questions relate to the code base of your organization’s software
product(s) or system(s) that you work on. If you work on multiple projects, either
choose a major project, or consider them all together as a whole.

16 Due to my geographic location (Canada) and the fact that a majority of the survey participants are
located here, I have used the North American term “masters thesis” rather than the UK term
“dissertation”.

 158

[Q01] Approximately how long has the primary system or project you work on
been in existence?17

Choice Response count Percentage
New development 5 13.2%
1-2 years 5 13.2%
3-5 years 6 15.8%
6-10 years 11 29.0%
11-20 years 7 18.4%
20-30 years 2 5.3%
30+ years 2 5.3%

On a scale of 1 to 7, ranging from Strongly Disagree to Strongly Agree, how would
you answer the following questions?

 1

Strongly
disagree

2
Disagree

3
Slightly
disagree

4
Neutral

5
Slightly
agree

6
Agree

7
Strongly

agree

Mean Std.
dev.

[Q02] I consider the size
of the project or
product to be very
large (e.g., large
number of staff
working on it,
large quantity of
code).

2
(5.3%)

4
(10.5%)

3
(7.9%)

6
(15.8%)

8
(21.0%)

10
(26.3%)

5
(13.2%)

4.68 1.74

[Q03] The system makes
use of a number of
different
languages or
technologies.

1
(2.6%)

1
(2.6%)

3
(7.9%)

3
(7.9%)

7
(18.4%)

14
(36.8%)

9
(23.7%)

5.42 1.50

[Q04] The application
domain (e.g.,
financial, health
insurance,
medical) of the
software I work
on is very complex
and specialized.

0 2
(5.3%)

5
(13.2%)

4
(10.5%)

4
(10.5%)

12
(31.6%)

11
(29.0%)

5.37 1.58

[Q05] Automated
regression test
cases are
regularly used in
our project.

10
(26.3%)

8
(21.0%)

1
(2.6%)

5
(13.2%)

3
(7.9%)

8
(21.0%)

3
(7.9%)

3.50 2.18

[Q06] The
system/product
uses modern
software
development
technologies and
techniques.

0 5
(13.5%)

5
(13.5%)

8
(21.6%)

3
(8.1%)

11
(29.7%)

5
(13.5%)

4.68 1.67

[Q07] The
system/product is
built using object-
oriented
technologies.

4
(10.8%)

10
(27.0%)

3
(8.1%)

2
(5.4%)

5
(13.5%)

7
(18.9%)

6
(16.2%)

4.05 2.15

[Q08] In general, I
consider the

2
(5.4%)

6
(16.2%)

6
(16.2%)

8
(21.6%)

4
(10.8%)

10
(27.0%)

1
(2.7%)

4.08 1.67

17 Mean and standard deviation are not reported for this question as the response categories are not
linear.

 159

 1
Strongly
disagree

2
Disagree

3
Slightly
disagree

4
Neutral

5
Slightly
agree

6
Agree

7
Strongly

agree

Mean Std.
dev.

quality of the
existing code I
work on to be
very good.

[Q09] I consider the
system/product to
have a well-
designed
architecture.

3
(7.9%)

5
(13.2%)

8
(21.0%)

6
(15.8%)

9
(23.7%)

5
(13.2%)

2
(5.3%)

3.95 1.66

[Q10] During the life of
the
system/product,
the original
architectural
vision has decayed
due to numerous
fixes and changes.

2
(5.4%)

2
(5.4%)

1
(2.7%)

5
(13.5%)

11
(29.7%)

11
(29.7%)

5
(13.5%)

5.00 1.58

The following questions relate to the project management approach used in your
organisation or project.

 1

Strongly
disagree

2
Disagree

3
Slightly
disagree

4
Neutral

5
Slightly
agree

6
Agree

7
Strongly

agree

Mean Std.
dev.

[Q11] The project uses a
highly formal,
structured
approach with
strict processes.

8
(21.0%)

8
(21.0%)

6
(15.8%)

2
(5.3%)

7
(18.4%)

6
(15.8%)

1
(2.6%)

3.37 1.91

[Q12] The project uses
an agile approach.

4
(10.5%)

7
(18.4%)

4
(10.5%)

5
(13.2%)

8
(21.0%)

8
(21.0%)

2
(5.3%)

4.00 1.85

[Q13] Formal
documentation
plays a major role
in our project
(e.g., developers
are given formal
functional and/or
technical
specifications).

14
(36.8%)

6
(15.8%)

1
(2.6%)

5
(13.2%)

7
(18.4%)

3
(7.9%)

2
(5.3%)

3.05 2.04

Part A, Page 2 of 6

Which of the following kinds of documentation do you regularly consume (i.e., read)
while you perform your job?

 Available, and I

use them
Available, but I do
not use them

Not
available

Not
relevant

[Q14] Requirements specifications 20
(55.6%)

5
(13.9%)

10
(27.8%)

1
(2.8%)

[Q15] User story cards 5
(13.5%)

2
(5.4%)

24
(64.9%)

6
(16.2%)

[Q16] Functional specifications 22
(59.5%)

5
(13.5%)

9
(24.3%)

1
(2.7%)

[Q17] Architectural design 14 10 12 1

 160

 Available, and I
use them

Available, but I do
not use them

Not
available

Not
relevant

documentation (37.8%) (27.0%) (32.4%) (2.7%)
[Q18] Detailed technical design

specifications
13
(36.1%)

3
(8.3%)

19
(52.8%)

1
(2.8%)

[Q19] Data dictionaries 9
(24.3%)

10
(27.0%)

17
(46.0%)

1
(2.7%)

[Q20] UML diagrams 7
(19.4%)

7
(19.4%)

21
(58.3%)

1
(2.8%)

[Q21] Test plans and test matrices 12
(33.3%)

8
(22.2%)

16
(44.4%)

0

[Q22] Test cases and test data 20
(54.0%)

10
(27.0%)

7
(18.9%)

0

[Q23] Bug/defect reports 31
(83.8%)

1
(2.7%)

4
(10.8%)

1
(2.7%)

[Q24] Comments in code 29
(78.4%)

4
(10.8%)

3
(8.1%)

1
(2.7%)

[Q25] Informal documentation such
as wiki pages

23
(62.2%)

4
(10.8%)

10
(27.0%)

0

Which of the following kinds of documentation do you regularly write and/or update
while you perform your job?

 Yes, I write/update

these
No, I don't write/update
these

Not
relevant

[Q26] Requirements specifications 13
(36.1%)

22
(61.1%)

1
(2.8%)

[Q27] User story cards 7
(19.4%)

23
(63.9%)

6
(16.7%)

[Q28] Functional specifications 15
(41.7%)

20
(55.6%)

1
(2.8%)

[Q29] Architectural design documentation 19
(52.8%)

16
(44.4%)

1
(2.8%)

[Q30] Detailed technical design
specifications

16
(44.4%)

19
(52.8%)

1
(2.8%)

[Q31] Data dictionaries 7
(19.4%)

24
(66.7%)

5
(13.9%)

[Q32] UML diagrams 11
(30.6%)

21
(58.3%)

4
(11.1%)

[Q33] Test plans and test matrices 17
(47.2%)

16
(44.4%)

3
(8.3%)

[Q34] Test cases and test data 28
(75.7%)

8
(21.6%)

1
(2.7%)

[Q35] Bug/defect reports 31
(83.8%)

4
(10.8%)

2
(5.4%)

[Q36] Comments in code 33
(91.7%)

2
(5.6%)

1
(2.8%)

[Q37] Informal documentation such as
wiki pages

24
(64.9%)

12
(32.4%)

1
(2.7%)

 161

Part A, Page 3 of 6

The following questions ask about comments in the existing code base of the major
system or product that you work on.

 1

Strongly
disagree

2
Disagree

3
Slightly
disagree

4
Neutral

5
Slightly
agree

6
Agree

7
Strongly

agree

Mean Std.
dev.

[Q38] A documentation
system such as
Javadoc or
Doxygen is used.

11
(30.6%)

4
(11.1%)

3
(8.3%)

4
(11.1%)

4
(11.1%)

4
(11.1%)

6
(16.7%)

3.61 2.31

[Q39] Comments
appear frequently
in the source
code.

0 5
(13.9%)

5
(13.9%)

0

9
(25.0%)

13
(36.1%)

4
(11.1%)

4.89 1.63

[Q40] Comments in the
source code tend
to be accurate
(they match the
source code they
describe).

1
(2.8%)

2
(5.6%)

5
(13.9%)

5
(13.9%)

11
(30.6%)

6
(16.7%)

6
(16.7%)

4.81 1.58

[Q41] Comments tend
to be out-of-date
(e.g., the code was
changed but the
comments were
not).

5
(13.9%)

4
(11.1%)

3
(8.3%)

8
(22.2%)

9
(25.0%)

6
(16.7%)

1
(2.8%)

3.94 1.74

[Q42] I find the existing
comments in the
source code very
helpful in
understanding
what the code
does and how it
does it.

2
(5.6%)

2
(5.6%)

6
(16.7%)

7
(19.4%)

8
(22.2%)

8
(22.2%)

3
(8.3%)

4.47 1.61

[Q43] Comments are
written in a
consistent way
across the source
code.

7
(19.4%)

9
(25.0%)

9
(25.0%)

2
(5.6%)

5
(13.9%)

2
(5.6%)

2
(5.6%)

3.08 1.76

[Q44] The general
quality of
comments is high.

4
(11.1%)

8
(22.2%)

5
(13.9%)

5
(13.9%)

6
(16.7%)

7
(19.4%)

1
(2.8%)

3.72 1.80

Part A, Page 4 of 6

What are your personal opinions on code commenting?

 1

Strongly
disagree

2
Disagree

3
Slightly
disagree

4
Neutral

5
Slightly
agree

6
Agree

7
Strongly

agree

Mean Std.
dev.

[Q45] "Program
comments are a
form of heavy
documentation
which violate agile
principles."

12
(33.3%)

11
(30.6%)

3
(8.3%)

3
(8.3%)

1
(2.8%)

5
(13.9%)

1
(2.8%)

2.69 1.88

[Q46] "If code is written
properly, it is self-

5
(13.9%)

12
(33.3%)

6
(16.7%)

3
(8.3%)

4
(11.1%)

5
(13.9%)

1
(2.8%)

3.22 1.77

 162

 1
Strongly
disagree

2
Disagree

3
Slightly
disagree

4
Neutral

5
Slightly
agree

6
Agree

7
Strongly

agree

Mean Std.
dev.

documenting and
doesn’t need any
comments."

[Q47] "Documenting or
commenting code
is a waste of time
because the
documentation
and code will drift
out of sync as the
code is changed."

13
(36.1%)

12
(33.3%)

4
(11.1%)

2
(5.6%)

2
(5.6%)

2
(5.6%)

1
(2.8%)

2.39 1.64

[Q48] "I would like to
document my
code better, but
deadline pressures
make that
impossible."

5
(14.3%)

5
(14.3%)

5
(14.3%)

6
(17.1%)

9
(25.7%)

5
(14.3%)

0 3.69 1.68

[Q49] "I find that
comments get in
my way."

13
(36.1%)

8
(22.2%)

3
(8.3%)

5
(13.9%)

6
(16.7%)

0 1
(2.8%)

2.64 1.69

[Q50] "Having better
comments and
documentation in
the existing code
would make my
job easier."

1
(2.8%)

1
(2.8%)

2
(5.6%)

5
(13.9%)

7
(19.4%)

11
(30.6%)

9
(25.0%)

5.36 1.51

[Q51] "I am very
diligent about
writing comments
when I develop or
maintain code."

3
(8.6%)

2
(5.7%)

0 6
(17.1%)

11
(31.4%)

6
(17.1%)

7
(20.0%)

4.89 1.76

[Q52] "I consider myself
more diligent than
my
colleagues/peers in
consistently
documenting my
code."

3
(8.6%)

1
(2.9%)

1
(2.9%)

13
(37.1%)

7
(20.0%)

6
(17.1%)

4
(11.4%)

4.54 1.62

[Q53] "I find comments
at the top of
classes or files are
useful."

2
(5.7%)

2
(5.7%)

2
(5.7%)

2
(5.7%)

7
(20.0%)

14
(40.0%)

6
(17.1%)

5.17 1.69

[Q54] "I find comments
at the top of
methods or
functions useful."

2
(5.7%)

2
(5.7%)

0 2
(5.7%)

6
(17.1%)

17
(48.6%)

6
(17.1%)

5.37 1.61

[Q55] "I find comments
within methods or
functions useful."

1
(2.9%)

2
(5.7%)

3
(8.6%)

3
(8.6%)

10
(28.6%)

11
(31.4%)

5
(14.3%)

5.06 1.53

 163

Part A, Page 5 of 6

The following questions ask about your experience with software maintenance and
any difficulties that you may have encountered.

 1

Strongly
disagree

2
Disagree

3
Slightly
disagree

4
Neutral

5
Slightly
agree

6
Agree

7
Strongly

agree

Mean Std.
dev.

[Q56] I work on a
system written by
developers who
have long left the
organization.

4
(11.4%)

1
(2.9%)

1
(2.9%)

7
(20.0%)

4
(11.4%)

6
(17.1%)

12
(34.3%)

5.06 2.01

[Q57] I sometimes find
it difficult to
understand what
some parts of the
code do or how
they work.

2
(5.6%)

1
(2.8%)

1
(2.8%)

5
(13.9%)

9
(25.0%)

14
(39.0%)

4
(11.1%)

5.11 1.51

[Q58] I often find it
difficult to gain a
“big picture”
understanding of
a system from
reading the code.

2
(5.6%)

2
(5.6%)

3
(8.3%)

1
(2.8%)

9
(25.0%)

11
(30.6%)

8
(22.2%)

5.17 1.73

[Q59] I feel that a lack
of domain
knowledge
hinders my
understanding of
the system.

2
(5.6%)

5
(13.9%)

4
(11.1%)

5
(13.9%)

8
(22.2%)

8
(22.2%)

4
(11.1%)

4.44 1.78

[Q60] I spend more
time reading and
debugging code
than I feel I
should have to.

2
(5.6%)

5
(13.9%)

3
(8.3%)

4
(11.1%)

10
(27.8%)

9
(25.0%)

3
(8.3%)

4.50 1.73

[Q61] The software I
work with has a
higher bug rate
than I am
comfortable with.

5
(13.9%)

1
(2.8%)

6
(16.7%)

7
(19.4%)

8
(22.2%)

7
(19.4%)

2
(5.6%)

4.14 1.76

[Q62] Quality issues in
our software have
led to deadline
and/or budget
overruns.

3
(8.3%)

1
(2.8%)

1
(2.8%)

6
(16.7%)

8
(22.2%)

14
(39.9%)

3
(8.3%)

4.92 1.63

[Q63] Of the time you spend programming, what percentage of your time do
you estimate you spend on “maintenance” development, i.e., reading and
modifying existing code in order to fix defects or make enhancements?

Choice Response count Percentage

0% 0 0%
10% 2 7.4%
20% 5 18.5%
30% 5 18.5%
40% 3 11.1%
50% 3 11.1%
60% 2 7.4%

 164

Choice Response count Percentage
70% 2 7.4%
80% 1 3.7%
90% 3 11.1%

100% 1 3.7%

Mean: 46.3%18

Part A, Page 6 of 6

[Q64] (Optional) Approximately how many years of experience in software
development do you have? (free-form numeric response)

Choice Response count Percentage
1 years 1 2.9%
2 years 1 2.9%
3 years 2 5.9%
4 years 2 5.9%
5 years 4 11.8%
6 years 1 2.9%
8 years 1 2.9%
9 years 1 2.9%
10 years 3 8.8%
11 years 2 5.9%
12 years 1 2.9%
13 years 1 2.9%
15 years 5 14.7%
18 years 1 2.9%
20 years 1 2.9%
21 years 1 2.9%
22 years 1 2.9%
25 years 2 5.9%
30 years 1 2.9%
34 years 1 2.9%
43 years 1 2.9%

Mean: 13.2 years
Standard deviation: 9.8 years

18 Assigning response code “1” to represent choice “0%”, “2” for “10%”, and so on up to “11” for
“100%”, the mean calculates to a value of 5.63, which corresponds to 46.3%.

 165

[Q65] (Optional) Do you have any further personal opinions on comments and
software documentation?

Respondent
No.

Response

2

Proper formal documentation should generally be left at the API
level rather than at the individual implementation detail level.

6

After thinking about how much time I spend reading/fixing bugs, I
just want to say "F*** My Life".

7 Commenting on commenting seems redundant.
8

should be consistency in terminology everybody is using to place
their comments (glossary should go first)

10

good comments should add something more than the code is saying:
//increment i i++; is utterly pointless!! Comments need to 'talk
through' complex algorithms or express ~why~ something is being
done ie intent! I'll often write simple comments first to sketch-out the
code I'm writing.

11

I work for a multinational organisation, where a lot of code is
developed in Japan. The comments the Japanese engineers add do
not translate (or are not) translated to English when they release
code to us, so the comments appear as random characters and are
useless. To add to the frustration the functional documentation
released by Japan has been translated by a translation package, so
some of the translations do not make sense, making comprehension of
the document difficult. Also, the documents do not contain enough
information describing the intention of the function or how it should
be used (i.e. code examples).

12

Stale documentation is better than no documentation, as long as you
know it could be stale!

23

Technical documentation (i.e. for developers or support teams)
should be limited to areas of detailed or complicated processing and
ignore boiler plate or obvious areas. i.e. don't have developers go
into intricate detail over the HTTP -> method binding (which is
standard library code anyway) and focus on the intention and design
of algorithms and processing functions. User documentation should
not be written by developers, nor should any project team member
misinterpret technical documentation for user consumption. The two
disciplines are far too distinct and aim to achieve distinct ends.

24

There were a lot of questions concerning coding and inline
comments, but 90% of software engineering is surely in developing
the documentation (requirements, analysis, design) before a single
line of code is written. After all, one wouldn't build a house without
having first checked the land, considered the requirements then
design it. So I would suggest casting your net a little wider to
consider the really important questions, rather than judging the
hypothetical house by its brick work. I hope this is constructive and
helps in your thesis. All the best, (name withheld)

38

The key idea for me is that Documents, Comments, and Code should
each provide a different level of abstraction on the System. During
both design and maintenance a developer should start at the
documentation level and have accessible tools to drill down into the

 166

Respondent
No.

Response

comments, then code. As I write I think the key is probably that
documentation and code are not cohesive enough in our current tool
sets, hence comments are the lazy option and show we are more code
centric, as it is the code that delivers business results. Interesting
survey and discussion point. Comments are in your face as you code,
where as documentation is less accessible.

31

To get good code it's necessary to have people use appropriate
paradigms for appropriate parts of any project. If OO techniques are
used to build complex databases or do serious constraint
programming or indeed many other things failure will inevitably
ensue: developers should use declarative paradigms such as
relational algebra, functional programming, constraint
programming, and logic programming where appropriate.
Comments are important in these declarative paradigms as well as in
procedural paradigms, but in my experience programmers educated
in the use of declarative paradigms are more inclined to describe
design intentions and design justifications in comments (even when
writing in appalling languages like C++ and Java) and maintain
them that programmers who limit themselves to OO languages (who
tend to write only useless comments like "add A to B to get C" - the
kind of thing that gives comments a bad name and leads to the
"comments are not needed because code is self documenting" error
(actually it would not be an error if all comments were like that).
Looking at just the question of comments (and the maintenance of
comments when code is modified) is not a good approach - it is
necessary to get programmers using appropriate tools (and you'll be
surprised how easy they find it to write useful comments when using
even a flawed attempt at a declarative language like SQL).

33

Documentation is extremely important, however management at
times do not understand this.

34

I feel that comments are extremely important. Many developers think
they are a waste of time but I find that this is usually because they are
assuming that other developers know what they know. For example, I
know developers who won't comment beans because they feel there is
no need. However, when a function is called 'isLive' or something -
is what live? What does live mean? It makes sense to the developer,
but not necessarily to anyone else. Documentation is something that
most developers seem to hate. However it does need to be someone's
responsibility to create and maintain it for the good of the
organization

36 Prefer executable documentation i.e. unit/regression/acceptance tests
37

In deciding whether or not to apply a comment in code, one has to
make assumptions about the level of knowledge of the reader. If a
high level of knowledge is assumed, then one might choose not to
comment the code or a section of it, if it is felt to be self-explanatory.
The addition of comments themselves potentially add to the
maintenance overhead of any future changes, if it is expected that
those comments will also need to be updated. In small programming
teams, it is difficult to make an economic case to have programmers

 167

Respondent
No.

Response

writing huge amounts of comments and other documentation, thus
extending project development times - any "return on investment"
with program commenting might be five or ten years away, when a
piece of code is eventually revisited. If the quality of comments is not
part of any staff appraisal process, there is no incentive to maintain
them. Programmers and teams are most commonly judged on how
the programs actually work, rather than what's behind the scenes.

38

I see no value in comments or documentation. They only tell you what
the programmer thought they were supposed to be doing which is less
irrelevant than either what they have actually done or what they were
actually supposed to do.

Part B, Page 1 of 2

Thank you for completing Part A.

Would you please kindly read the following article before continuing with Part B?

Please copy and paste the following URL into a new tab or window of your browser:

http://www.kevinmatz.com/survey/IntroducingDesignIntentionDrivenProgramming.
html [Note: This article is reproduced in Appendix G.]

When you have finished reading the article, please return to this page and continue to
the next page of this questionnaire.

Part B, Page 2 of 2

The following questions ask for your personal opinions about the proposed Design
Intention Driven Programming and Java with Intentions schemes.

 1

Strongly
disagree

2
Disagree

3
Slightly
disagree

4
Neutral

5
Slightly
agree

6
Agree

7
Strongly

agree

Mean Std.
dev.

[Q66] "I would be
willing to give this
approach a try, at
least on a trial
basis."

7
(20.0%)

5
(14.3%)

1
(2.9%)

5
(14.3%)

5
(14.3%)

10
(28.6%)

2
(5.7%)

3.97 2.08

[Q67] "I see no
advantage to this
approach over
normal comments
or existing
documentation
systems."

1
(2.9%)

9
(25.7%)

7
(20.0%)

6
(17.1%)

5
(14.3%)

4
(11.4%)

3
(8.6%)

3.83 1.71

[Q68] "The practice of
recording design
intentions before
writing code is a

0 1
(2.9%)

2
(5.7%)

2
(5.7%)

5
(14.3%)

19
(54.3%)

6
(17.1%)

5.63 1.19

 168

 1
Strongly
disagree

2
Disagree

3
Slightly
disagree

4
Neutral

5
Slightly
agree

6
Agree

7
Strongly

agree

Mean Std.
dev.

sensible idea."
[Q69] "Recording design

intentions before
writing code
might be nice in
theory, but is
impractical for
real-world
projects."

2
(5.7%)

5
(14.3%)

11
(31.4%)

5
(14.3%)

8
(22.9%)

3
(8.6%)

1
(2.9%)

3.71 1.49

[Q70] "Developers
would resent
being forced to
write
documentation. It
would only cause
frustration and
slow down
projects."

2
(5.7%)

4
(11.4%)

5
(14.3%)

7
(20.0%)

10
(28.6%)

5
(14.3%)

2
(5.7%)

4.20 1.59

[Q71] "Adding
specialized
constructs for
design intentions
to programming
languages would
help stress the
importance of
proper
documentation."

3
(8.6%)

3
(8.6%)

2
(5.7%)

5
(14.3%)

9
(25.7%)

9
(25.7%)

4
(11.4%)

4.63 1.78

[Q72] "Instances of
design patterns
should be
documented for
ease of
understanding by
later
maintainers."

1
(2.9%)

2
(5.7%)

1
(2.9%)

5
(14.3%)

12
(34.3%)

9
(25.7%)

5
(14.3%)

5.06 1.45

[Q73] "This approach
could potentially
work well in agile
projects."

1
(2.9%)

4
(11.4%)

3
(8.6%)

13
(37.1%)

2
(5.7%)

11
(31.4%)

1
(2.9%)

4.37 1.52

[Q74] "This approach
could potentially
work well in
formal,
documentation-
driven projects."

1
(2.9%)

1
(2.9%)

0 6
(17.1%)

8
(22.9%)

16
(45.7%)

3
(8.6%)

5.26 1.29

[Q75] "Software
projects
consistently
documented in
this way would be
easier to
understand than
projects developed
using traditional
techniques."

1
(2.9%)

3
(8.6%)

5
(14.3%)

8
(22.9%)

3
(8.6%)

11
(31.4%)

4
(11.4%)

4.66 1.66

 169

[Q76] (Optional) Do you have any remarks on potential problems with the
proposed approach?

Respondent
No.

Response

1

In older systems, where a large amount of code has already been
written, it would be difficult and time consuming to bring all
comments up to date. This would be especially frustrating if intention
comments were required to compile code.

2

I think Test-driven development is a better approach. You define
what your method is supposed to do and then implement runnable
tests to make sure that it does what it is supposed to do. This way,
the design intentions can be a header block, but when the code and
the docs diverge you know that test cases are really what counts for
correctness.

3

The intention of this approach is good, but may have difficulty to
implement in real-life projects.

6

Overuse of forced inline comments can sometimes be detrimental to
understanding the content as a whole by virtue of making the code
longer and more verbose

9

Comments shouldn't be compiler objects. They should be free form.
That's the point of comments. I like the idea of having a standard
methodology for documenting code though, just don't implement it
through the compiler. Better implemented through documented
design/development standards. Then, if developers still don't follow
them, fire them!

10

Yet ANOTHER syntax to learn?! And the more it looks like code the
more it's going to have code-type problems ie bugs. why not extend
javadoc? aka JUnit's @Test

11

A lot of function headers and code use cut and paste and then
modification to speed up the work. How would this approach affect
your proposed approach?

12 Yes. I've been doing it myself, for years.
13

No advantage over existing documentation (Javadoc etc) or tools
(Checkstyle) No advantage to proper process, planning meetings,
TDD, pair programming, peer reviews etc. The most likely reason
for duplication of documentation is duplication of code. Enforcing
principles of any kind is never a good idea, the team should buy into
anything being proposed. This ensures it gets done correctly as the
team believes in its value. If people don't have time to write
comments how do they have time to write intentions? Enforcing them
via the compiler would soon get switched off! What makes people
more likely to update intentions compared to regular documentation?
Would require a separate language and compiler for popular
languages such as Java and C#! (however in Java you could
probably do something similar with Annotations)

15

Design intentions could be stored elsewhere, in technical
specifications, for example. Embedding this information within code
may cause unnecessary clutter.

17

Developers would resist until they could see a clear benefit to
themselves. Unfortunately those developing a system are often not the

 170

Respondent
No.

Response

ones who maintain it.
18

It doesn't add any clear benefit, and creates more work. If quality has
suffered due to time constraints then the time would not be available
to adopt this approach. It also clutters the code with the
implementation of 'documentation' interfaces. In any good team I
believe communication and inline comments are enough. A good
design is usually easy to pick up and speaks for itself.

19

The main problem I could potentially see is buy-in by all
programmers. Many programmers see comments as a waste of time -
though I find it very useful when there are well laid out comments. A
culture must be created where this is the norm. As well, there may
be issues with deciphering what the comments actually say. A
programmer might just do a half assed job in writing these
comments. Even after passing the compiler test, it may need a code
reviewer to look though the comments.

23

Abusing any language to add additional documentation constructs is
mostly counter-productive. Documentation is one thing, code assets
another. Intermingling the two too tightly causes problems with
release and other maintenance headaches when edge and corner
cases evolve. Requirements are (or should) be a fixed element once a
cycle is complete, these can be referred back to at any time when
proposed changes in later versions do not accomplish the intended
result to repair functionality, if held in code this would result in
potential regression issues as it would require an SCM answer to a
process problem.

24

The proposed approach is basically 'pseudocode' which we used back
in the 1980's for procedural design. Yes there should be and indeed
has to be, documentation a long time before coding. This is amply
served by structured methods, such as UML, OOAD etc. There is no
shortcut to doing the leg-work up front - techies tend not to like it, but
it is essential, plain fact! I fail to see how one can write an intention
in code, without having considered the context of the classes etc. that
are being 'typed' - it sounds more like "flying by the seat of one's
pants".

26

While I understand I would expect that over time the system would
degenerate into standard comments with the extra syntax required to
write them. If coders are not disciplined enough to write decent
comments in the first place why would extra syntax help?

28

With no strong automated testing/checking of the descriptive content
of intentions I still see an issue as with Javadoc that different
developers will describe their intentions in different ways, or worse
leave the intention description blank (you have a solution/idea for
this but I am sceptical). The other issue I have with this solution is
that code and implementation are in the same physical file. You
would require tools (i.e. IDE to manage the display of intentions or
code). I'm wondering if some kind of reference/linking mechanism
would be better?

31

It's trying to make a currently overhyped paradigm (Object
Orientation) more useful, by addressing one overhyped and not

 171

Respondent
No.

Response

terribly useful language in that paradigm. Maybe it would succeed if
it went for an OO language other than Java (perhaps C# or
Smalltalk) but it would still be too restrictive to be useful because
there is no imaginable way serious big systems can be written using
OO language alone. If it were extended to cover F#, C#, LML, SQL,
Prolog, Parlog, and a few other languages it might help with serious
system building, but confined to Java it's not going to be useful.

34

I think that developers would be frustrated and annoyed at being
forced to write comments (however, that doesn't mean they
shouldn't). It is sometimes difficult to know the intention, especially in
agile projects, where planning is minimal

35

Unless the compiler can detect whether the comments are correct or
not then the approach is vulnerable to developers just adding the
bare minimum comments.

36

The intentions are just as likely to be incorrect/out of date as
comments. There's no way to check/enforce the correctness of any
of the intention inheritance/implementation relationships. Increased
incidence of value-less comment 'noise'

37

The comments about intentions are not next to the actual code that
they relate to. Cross-referencing is required. Mandatory
requirements to write a certain amount of text based on an arbitrary
formula would just get infuriating, and programmers might simply
type gobbledegook or (if management objected to that) standard
stock phrases that actually mean very little. Alternatively, such
requirements might result in the whole approach being abandoned.

38

It's difficult enough to get people to write things twice (code +
acceptance test). Adding a 3rd (design intention) is likely too much.

[Q77] (Optional) Do you have any remarks on potential benefits of the
proposed approach?

Respondent
No.

Response

1

Definitely would make code easier to read and to understand.
Discussion of why a particular approach was chosen would be
especially useful when the approach is complicated. Highlighting
relationships between pieces of code using comments would also
particularly useful, especially in complex systems.

2

I think it might be appropriate in very complex/domain specific code
which has a very high likelihood of being misunderstood or broken
during a correction

6

Descriptive comments at the top of functions and structures really
ought to be mandatory. Good on you for trying to do it.

10

nice idea, and I like the idea of capturing what experienced
developers do anyway ie comment to express intent and meaning. A
javadoc type system could use these to write a reverse-engineered
design spec to check against original spec.

11 If the DIDP comments could be automatically extracted to generate

 172

Respondent
No.

Response

 documentation that would be beneficial
12 Fit it in with test driver design, so you lay out the intention and the

test!
17

Because the documentation is in the code it adds to more traditional
design docs. ie it shows how the software requirements are
implemented.

18

documentation (although this would be better placed in JavaDoc or
system documentation). It might add benefit to more junior coders or
for students, although I think they would be better off learning design
patterns and API's, algorithms, etc.19

19

It makes code easier to understand, especially if you are new to the
team. Some applications have a steep learning curve, and if the
intention of a particular function, or series of functions is written
down, it can only help the developer. It is also useful when reading
functional/technical specifications to be able to follow along to see
what parts of the code are doing what.

23

A corporate or team development standard based on the principles
you've started on could lead to a shallower learning curve for newer
or less familiar team members.

26

Writing design intentions is a very good principle and would help. I
am not sure more syntax is needed though.

28

As discussed early using this method would ensure (or help to
ensure) a level of documentation is closely related to the code
implementation. The approach you have taken on making a
comment an object and allowing them to be syntactically linked to
one another is good.

31

Obviously if the compilation system refuses to compile stuff that
doesn't have design intention (and preferably also design justification
and requirement description) comments there is some chance that it
will encourage people to write useful comments.

32

I think it is a great idea and would create a better quality and
maintainable final product. However although maintenance costs of
the product would be decreased the initial cost of development would
be higher.

34

It would enforce documentation, although general code styles could
do the same without the frustrating compiler checking

36

In a rigorous environment, I can see that the reuse of intentions (e.g.
where a pattern catalogue is in use) might be seen as an advantage.

37

It makes a statement about the project's values - that developers are
expected to frequently document their work.

38 Sceptical but could be of some use if coupled with language
semantics.

19 The beginning part of this remark appears to have been lost.

 173

[Q78] (Optional) Do you have any suggestions or further comments on the
proposed approach?

Respondent
No.

Response

1

Could be helpful to include a list of parameters and what they
mean/represent/are used for in method-level comments.

7

This would be met with initial resistance, but this would logically
pass as developers benefit from the comments. Comments should be
mandatory at the beginning of programming constructs such as
loops, ifs with >n lines, cases, etc. A check in the editor/or compiler
that prevents long segments of code with no comments from being
generated would be useful.

10 would the intent be written first, validated, then code written?
11

Can you add references to other documentation such as UML
diagrams in the DIDP comments to help explain the code
functionality?

12

Lay it out by writing a concise comment on that you are going to do.
It clears the mind. The do it. Then make the comment say what you
have done. It's easy!

18 annotations would be better than this approach, for brevity.
23

However, there is no way a consensus across all language users will
yield a consistent construct or usage to make this a staple of
programming in 'x'. As with all methodologies, ideologies and fads
(be it agile, waterfall, centralised, decentralised, comment,
annotation, or whatever) most software houses will not fully
implement any single pattern or method, but will cherry pick from
them all until they have something that works for them.

24

Consider the whole design/documentation work-flow. If a subsequent
software engineer needs to find out what makes a class tick, the
external documentation should give him every thing he (or she) needs
- with full explanation of intention and all in context. I hope this is
helpful in some way - you did ask for comments and I hope they're
constructive. By the way - I design software control systems for
particle accelerators and speak to international organisations on the
subject. Please feel free to contact me if you would like to discuss at
all. Best regards, <name withheld>

26

You could achieve similar results by analysing the code and ensuring
there is a suitable ratio of comments to code. This is a little less OO
specific too.

28

I have provided suggestions in my previous comments. One thing you
might like to add to your thesis is a discussion on international
comments? I can read Java in any language even if the comments are
in French, German, or Spanish which I can't read. Are comments just
a way to help people who can't read java (cynical joke!)

31

Make Intention, Requirement, and Justification comments three
different kinds of thing. Maybe require each at some level
(Requirement at a many files level; Intention at File level, maybe at
function level, data structure level [that could be object or schema or
...]; justification - well, clearly there are obvious places for it in the
DDL component of SQL, and in old-style ADT languages, and in

 174

Respondent
No.

Response

constraint solving languages; in OO languages it's probably hard to
automate discovery of places where compiler should enforce its
presence - too much enforcement would just encourage people to
make useless comments, worse than nothing).

32

This would make business sense if the people developing the code
were also going to be tasked with maintaining it. Or if the purchaser
of the product was willing to pay a premium for something that was
less expensive to maintain

34 I think it's a good idea but I don't like the implementation of having to
implement interfaces. Perhaps annotations would be better?

36 Interesting idea, but IMO flawed.
37 Intention comments are described as being object-oriented. I do not

work in an object-oriented programming environment, so any
approach also needs to be applicable to legacy code. Rather than
attempting to force good documentation through compiler-enforced
checks, and extra programming constructs, a better approach might
be for management to set out clear statements about the commenting
approach and standards required, with the standards actually
affecting the performance rating of the staff involved.

Final page

Thank you for participating in this survey! Your help is very greatly appreciated!

Responses to this survey are anonymous. If you wish to inform me that you've
completed the survey, please send an e-mail to kevin@kevinmatz.com and mention
that the magic word is "CACTUS".

(This is the same magic word for all participants – it cannot be used to personally
identify you.)

Thanks again for your help!

Sincerely,
Kevin Matz

 175

Appendix F: Raw survey response data

Table 43 and Table 44 present the raw data from numeric questions on the survey
questionnaire. Please see Appendix E for the responses to the open-ended free-text
questions (Q65, Q76, Q77, Q78).

Question numbers marked with asterisks are not Likert scale questions.

Table 43: Numeric response data for participants 1 through 20

Participants

Question 1 2 3 4 5 620 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Q01* 7 1 6 4 5 1 4 2 3 5 2 3 1 5 6 7 2 3 3 1
Q02 4 4 6 4 6 2 7 5 6 7 5 3 1 5 7 6 1 6 6 3
Q03 6 5 7 1 3 3 7 6 3 7 6 5 6 5 6 6 6 6 4 5
Q04 3 3 7 3 6 3 4 3 2 7 6 4 6 6 7 7 7 6 6 6
Q05 4 5 2 2 2 4 1 4 2 7 1 3 1 1 2 1 1 2 2 6
Q06 7 6 5 . 4 6 5 3 2 7 4 3 2 2 4 2 6 6 4 6
Q07 7 6 2 5 2 7 3 . 6 5 1 2 1 4 2 2 6 2 3 6
Q08 4 6 3 5 4 6 2 5 1 4 1 3 6 2 2 2 5 3 4 3
Q09 5 5 4 5 2 5 3 5 1 4 2 2 5 1 1 2 4 3 5 6
Q10 4 5 6 5 7 1 7 5 6 5 6 6 2 3 7 6 5 1 4 4
Q11 6 5 5 1 3 1 3 2 1 6 1 2 1 3 2 2 5 5 6 2
Q12 6 6 6 2 3 5 6 2 1 4 6 5 7 2 2 4 4 5 3 6
Q13 4 5 6 1 1 4 2 2 1 7 1 1 1 5 1 2 1 1 5 2
Q14* 1 1 1 1 3 . 1 1 2 2 3 3 3 2 1 1 1 3 1 1
Q15* 4 1 3 1 3 . 3 1 4 3 3 3 3 3 3 3 4 3 3 3
Q16* 2 1 1 1 3 . 1 1 3 2 1 3 3 1 1 1 1 1 1 1
Q17* 1 1 2 1 3 . 1 1 2 2 3 1 3 3 2 3 3 3 1 2
Q18* 1 3 1 3 3 . 1 . 2 2 3 1 3 3 3 3 3 3 3 3
Q19* 1 2 2 1 3 . 1 3 3 3 3 3 1 1 1 2 3 3 2 3
Q20* 1 1 3 3 3 . 3 2 3 3 3 1 2 3 3 3 3 3 3
Q21* 1 1 3 2 3 . 1 1 3 2 3 3 3 1 3 3 3 3 1 3
Q22* 1 2 2 2 3 . 1 1 1 2 3 3 3 1 1 1 1 3 1 1
Q23* 1 1 1 3 1 . 1 1 1 1 1 1 1 1 1 1 3 1 1 1
Q24* 1 1 1 1 3 . 1 1 1 1 1 1 1 3 1 1 1 1 2 1
Q25* 1 1 1 1 3 . 1 1 1 1 3 1 3 3 2 1 3 3 3 1
Q26* 1 1 1 2 1 . 2 2 2 2 2 3 2 2 2 2 1 2 2 2
Q27* 2 1 3 1 2 . 2 1 2 2 2 3 2 2 2 2 3 2 2 2
Q28* 1 2 1 2 1 . 2 2 2 2 2 3 2 2 2 1 1 2 2 2
Q29* 1 1 1 1 2 . 1 2 2 2 1 2 2 2 2 2 3 2 2 1
Q30* 1 1 1 2 2 . 1 2 2 2 1 2 2 2 2 2 3 2 2 2
Q31* 1 1 2 2 2 . 2 2 2 2 2 3 3 2 2 2 3 2 2 2
Q32* 1 1 2 2 1 . 2 1 2 2 1 3 1 2 2 2 3 2 2 2
Q33* 1 1 2 2 2 . 1 1 2 2 2 3 2 1 2 2 3 2 1 2
Q34* 1 1 1 2 1 . 1 1 1 2 2 3 2 1 1 1 2 1 1 1
Q35* 1 1 1 2 1 . 1 1 1 1 1 1 1 1 1 1 3 1 1 1

20 While respondent 6 did not complete the survey, the responses to the questions answered appear
legitimate and the decision was made to retain these responses.

 176

Participants

Question 1 2 3 4 5 620 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Q36* 1 1 1 1 1 . 1 1 1 1 1 1 1 2 1 1 1 1 2 1
Q37* 1 1 1 1 2 . 1 1 1 1 2 1 2 2 2 1 3 2 2 1
Q38 4 7 1 6 2 . 1 6 6 5 5 4 1 4 2 1 1 5 4 2
Q39 6 6 5 6 5 . 2 6 6 5 3 6 6 3 2 5 6 5 5 2
Q40 6 6 5 5 5 . 3 5 4 4 1 5 7 2 4 5 6 5 5 5
Q41 6 3 3 4 4 . 5 5 4 5 6 4 1 6 5 5 4 7 4 4
Q42 6 5 5 5 6 . 4 4 3 4 1 3 4 4 2 5 7 7 5 3
Q43 6 5 2 2 4 . 2 2 2 4 1 1 6 3 1 3 5 2 5 1
Q44 6 5 2 2 4 . 2 5 2 3 1 3 6 3 1 5 5 2 6 4
Q45 4 1 2 1 1 . 3 3 6 1 1 1 2 6 2 2 2 6 2 6
Q46 4 2 6 5 4 . 5 3 5 2 1 2 2 3 2 1 4 6 3 6
Q47 4 2 2 1 2 . 5 2 2 2 2 1 1 3 2 2 3 6 3 5
Q48 4 5 6 1 2 . 2 5 2 4 4 4 1 3 6 5 5 5 5
Q49 4 4 1 2 1 . 2 4 2 2 3 2 1 3 1 5 1 1 5 5
Q50 4 7 7 6 7 . 4 6 6 5 5 6 4 6 7 7 5 5 6 3
Q51 4 5 5 7 6 . 5 5 7 5 4 7 6 4 6 5 5 7 5 1
Q52 4 4 4 5 6 . 4 4 7 6 4 7 . 4 6 5 5 1 5 2
Q53 4 6 6 6 6 . 6 6 7 5 6 7 2 6 6 7 4 5 5 3
Q54 4 6 7 6 6 . 6 6 7 5 6 7 2 6 6 7 5 6 6 5
Q55 4 6 6 6 6 . 3 6 3 5 5 7 6 6 7 5 5 6 6 2
Q56 5 4 7 5 4 . 7 6 6 7 4 6 1 . 7 7 1 7 4 4
Q57 4 5 6 3 6 . 6 6 5 7 5 6 1 6 6 6 5 7 6 4
Q58 3 5 7 3 6 . 6 5 5 7 2 7 6 5 6 2 5 7 7 5
Q59 4 4 6 2 6 . 5 7 2 7 1 3 1 3 6 5 5 7 6 6
Q60 5 7 5 2 6 . 3 6 6 7 2 4 1 4 6 6 5 7 6 4
Q61 3 4 4 5 6 . 5 5 7 4 1 3 1 5 6 4 5 6 6 3
Q62 4 5 6 5 6 . 5 6 7 4 5 4 1 6 7 6 5 6 6 6
Q63* . 6 4 5 7 . 8 . 4 . 5 4 3 . 10 10 2 . 8 5
Q64* . 15 10 6 15 . 11 4 5 25 21 25 15 5 15 10 2 5 4 3
Q66 4 . 7 1 5 . 2 4 2 7 1 2 6 6 6 6 6 4 6 3
Q67 4 . 2 7 5 . 6 2 7 2 3 6 4 3 2 3 5 4 4 5
Q68 4 . 6 6 6 . 6 5 2 7 6 6 6 4 6 6 6 7 6 5
Q69 4 . 3 3 2 . 3 5 4 2 5 2 2 5 3 3 3 7 5 5
Q70 4 . 5 5 4 . 6 3 4 2 4 5 3 3 4 5 3 7 5 6
Q71 4 . 6 2 6 . 5 5 2 7 3 1 4 5 6 5 5 7 6 3
Q72 4 . 6 2 6 . 3 4 2 5 5 6 5 5 6 5 5 7 6 5
Q73 4 . 6 2 6 . 2 6 2 4 4 4 2 6 6 4 6 7 6 3
Q74 4 . 6 2 7 . 6 6 6 6 6 5 5 6 6 6 5 7 6 5
Q75 4 . 6 2 6 . 4 6 2 6 6 3 4 6 7 6 5 7 6 4

 177

Table 44: Numeric response data for participants 21 through 38

Participants

Question 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3821
Q01* 4 4 5 5 4 4 4 4 5 1 4 4 3 5 2 4 2 3
Q02 6 2 2 5 5 6 2 5 3 4 7 5 4 4 6 7 6 5
Q03 5 7 6 6 6 6 2 5 7 4 7 7 5 7 6 7 6 4
Q04 7 7 6 5 6 2 6 6 5 4 7 5 4 7 5 7 6 7
Q05 4 6 1 6 1 6 1 2 6 4 7 1 5 5 6 6 6 7
Q06 3 6 4 5 2 6 3 4 6 4 7 3 6 4 6 7 6 7
Q07 2 6 1 5 2 5 1 2 2 4 7 5 7 3 6 7 6 7
Q08 5 2 3 2 4 . 6 6 6 4 3 4 4 6 7 6 6 6
Q09 3 3 3 3 3 3 2 5 7 4 6 4 6 4 7 6 6 5
Q10 6 5 6 7 5 6 6 . 5 4 5 4 5 7 6 2 6 5
Q11 3 3 4 2 1 2 1 6 2 4 5 1 6 3 6 7 5 5
Q12 5 7 3 5 3 6 1 2 2 4 1 1 4 2 6 5 5 5
Q13 6 1 3 1 1 2 1 5 5 4 5 1 7 4 6 4 2 5
Q14* 1 4 3 1 3 1 3 . 1 2 1 3 1 1 1 1 3 2
Q15* 3 1 3 1 3 3 3 4 3 2 4 3 2 4 3 3 3 3
Q16* 1 4 3 3 3 1 1 2 1 2 1 3 1 1 1 1 3 2
Q17* 2 4 3 1 3 1 3 2 1 2 1 3 1 3 1 1 2 2
Q18* 1 4 3 3 3 3 1 1 1 2 1 3 1 3 1 1 3 1
Q19* 1 2 1 3 3 3 4 2 1 2 3 3 2 3 2 3 3 2
Q20* 2 2 3 3 3 1 3 3 4 2 1 3 2 3 1 1 3 2
Q21* 3 2 3 2 3 2 1 . 1 2 2 3 1 1 2 1 3 1
Q22* 1 2 3 2 1 2 1 1 1 2 1 3 2 1 2 1 1 1
Q23* 1 1 3 1 1 1 1 1 1 2 1 3 4 1 1 1 1 1
Q24* 1 2 3 1 1 1 1 1 1 2 1 1 4 1 2 1 1 1
Q25* 1 1 3 1 1 1 3 2 1 2 1 1 1 1 2 1 3 1
Q26* 2 . 1 1 2 2 2 2 1 1 2 1 1 1 2 1 2 2
Q27* 2 1 2 1 2 2 2 . 1 1 2 2 2 3 3 2 2 3
Q28* 1 . 1 2 2 2 1 2 1 1 1 1 1 1 2 1 2 2
Q29* 2 . 1 1 2 1 2 2 1 1 1 1 1 1 1 1 1 2
Q30* 2 . 1 2 2 2 1 2 1 1 1 1 1 1 1 1 1 2
Q31* 2 . 1 2 1 2 2 2 1 1 2 2 2 3 3 2 1 2
Q32* 2 . 2 2 2 1 2 2 3 1 1 2 1 3 2 1 2 2
Q33* 1 . 1 2 2 2 1 3 1 1 1 2 1 2 1 1 1 1
Q34* 1 1 1 2 1 2 1 1 1 1 1 1 1 1 2 1 1 1
Q35* 2 1 1 1 1 1 1 1 1 1 2 2 3 1 1 1 1 1
Q36* 1 . 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1
Q37* 1 1 2 1 1 1 2 2 1 1 1 2 1 1 2 1 1 1
Q38 2 1 1 1 7 6 1 1 1 3 7 5 3 3 7 7 7 .
Q39 3 5 2 6 6 7 2 5 6 3 7 5 3 6 7 6 7 .
Q40 4 3 6 4 6 6 2 5 7 3 7 3 5 3 7 7 7 .
Q41 5 5 2 4 1 2 5 2 1 3 1 6 6 5 6 2 1 .
Q42 3 1 5 2 6 6 6 6 5 3 6 3 4 4 7 6 5 .
Q43 2 1 3 1 3 3 3 2 2 3 5 1 3 5 7 3 7 .
Q44 2 1 3 2 4 6 2 4 6 3 5 1 6 4 6 5 7 .
Q45 2 7 4 6 2 1 1 5 2 1 2 1 3 2 4 1 1 .

21 While respondent 38 did not complete the survey, the responses to the questions answered appear
legitimate and the decision was made to retain these responses.

 178

Participants

Question 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3821
Q46 2 7 5 6 3 3 1 2 2 2 2 6 1 2 2 1 3 .
Q47 2 7 4 6 1 1 1 2 1 3 1 1 1 2 1 1 1 .
Q48 5 1 6 2 6 5 3 4 2 4 1 5 3 3 6 5 1 .
Q49 1 7 5 5 4 1 1 2 1 5 1 3 2 2 4 1 1 .
Q50 6 2 5 3 5 6 7 7 4 6 6 6 7 5 7 1 4 .
Q51 5 1 2 2 4 6 7 5 6 7 6 4 4 5 . 1 7 .
Q52 5 1 4 1 7 6 6 4 4 6 4 5 4 5 3 4 7 .
Q53 6 2 6 5 5 7 6 . 5 5 6 7 3 6 7 1 1 .
Q54 6 2 6 5 5 7 6 . 6 4 6 6 5 6 7 1 1 .
Q55 5 2 6 4 5 7 6 . 7 3 5 5 5 4 5 1 7 .
Q56 5 7 2 7 7 6 6 7 4 1 7 6 4 5 3 7 1 .
Q57 5 7 6 7 6 6 6 4 5 2 6 5 5 4 4 5 1 .
Q58 6 6 5 7 5 6 7 4 1 3 6 7 6 6 5 6 1 .
Q59 5 2 5 3 6 6 6 5 2 4 5 2 4 3 4 5 7 .
Q60 5 6 2 5 5 5 6 2 5 5 3 5 6 4 3 2 1 .
Q61 5 2 4 6 7 3 5 1 4 6 3 5 4 6 3 1 1 .
Q62 6 6 4 6 6 5 5 4 6 7 3 2 4 6 5 1 1 .
Q63* 7 9 . 3 11 3 3 10 4 . 3 6 6 4 . . 2 .
Q64* 1 5 22 34 12 11 10 18 43 9 13 8 . 20 3 30 15 .
Q66 6 5 2 1 5 6 6 6 1 1 5 2 4 4 5 1 1 .
Q67 3 5 4 6 6 2 2 3 2 2 7 3 3 5 4 2 1 .
Q68 6 6 6 6 6 6 6 5 7 3 7 6 3 5 5 7 7 .
Q69 3 2 5 6 5 4 3 5 1 4 6 3 4 3 6 1 3 .
Q70 5 6 6 4 6 5 3 2 1 5 7 5 1 4 2 2 5 .
Q71 5 6 6 2 5 6 5 4 5 6 6 7 4 4 7 1 1 .
Q72 6 6 5 6 5 5 5 4 7 7 7 4 4 6 5 7 1 .
Q73 5 6 4 4 4 4 4 4 4 6 6 5 3 6 3 4 1 .
Q74 7 6 4 5 6 6 6 6 4 5 6 4 5 5 4 4 1 .
Q75 5 3 4 3 6 6 6 7 3 4 7 3 4 5 4 2 1 .

 179

Appendix G: The article included with the
survey

(The following article was hosted at
http://www.kevinmatz.com/survey/IntroducingDesignIntentionDrivenProgramming.
html and a link was made available to survey participants.)

Introducing Design Intention Driven Programming and
Java with Intentions

(Version 1.1)

In team-based software development, and especially in the maintenance of legacy
software systems, developers spend much of their time on the activity of program
comprehension.

In order to make a change or an enhancement to an existing system, a developer must
first understand the code to be modified. It can be very time-consuming to read and
analyze complex code artefacts to understand what they do and how they work, and
to determine how to modify them. A developer reading someone else's code must try
to piece together the intentions of the original author – that is, what the author had in
mind when writing the code.

If the code has been written carefully, by using good naming of identifiers (variables,
methods, and classes), by employing a clear logical structure, and by using
commonly-known design patterns, later developers can often figure out what the
code does and how it works. Due to time pressure, inexperience, or other factors,
however, many systems were not constructed using “best practices”, and even in
“good” systems, the code quality and structure of the system have often deteriorated
over time due to countless changes and quick fixes made by many developers. And
often code is extremely complex to understand, simply because it is doing some very
complex things.

In the absence of suitable documentation, a developer making changes to existing
code that he or she is not familiar with must typically do time-consuming analyses,
formulating and testing hypotheses about what is going on. Under deadline pressure,
a developer may have to make assumptions and carry out changes based on an
incomplete understanding of the code being modified, which often leads to further
errors and defects that must be corrected again at a later date.

Obviously, developers can give clues and insights to future developers by writing
comments that explain what the code does, how it works, and why it was designed
that way. Comments could even contain hints about how to make future expected
changes.

 180

In many legacy systems, however, comments are non-existent or are of poor quality.
And external documentation such as functional specifications, technical design
documentation, or data dictionaries, that might provide additional clues, can become
lost or out of date.

When we build new systems that will be maintained over long periods of time, is
there any approach we can take to help reduce the burdens of program
comprehension and missing documentation?

Introducing Design Intention Driven Programming

Design Intention Driven Programming (DIDP) is an approach that encourages
developers to record their design intentions before they write a piece of code.
Developers record their design intentions for a component of a system simply by
writing a brief description of what they plan for that component to do, and how it
will do it. The description may also include rationale – a justification of why one
particular solution was chosen over alternative solutions.

In the DIDP approach, a system is written using a programming language that has
been extended with special language constructs called intention comments that aid in
the recording of design intentions. For example, if you were constructing a system
based on Java, you would use a language called Java with Intentions that extends the
Java language syntax with support for intention comments.

In DIDP, before you write a new class, a new method, or a section of code within a
method, you should write an intention comment for it, briefly explaining what you
plan to do and how the code will work. When you then write the corresponding code,
if you have to diverge from your plan, you should then update the intention comment
to match the implementation.

Now you're probably asking, why can’t we just use normal comments to do this?
Well, of course, you certainly could. Intention comments are very much like existing
comments in programming languages – they store free-form textual explanations –
but they have several unique features:

• Intention comments encourage documentation re-use and help prevent
duplication, because they are object-oriented constructs that support the
inheritance mechanism. Intention comments can have fields containing either
text or references to classes, objects, or other intention comments. An
intention comment can be abstract, serving as a template, and other intention
comments can extend it and fill in the required fields. This is a particularly
suitable way of documenting instances of design patterns, as we will see
shortly.

• Because intention comments can be named and can refer to each other, and

because intention comments representing requirements and goals can be
created, interlinked networks of intention comments can be used to represent
a design for the system at different levels of abstraction.

 181

• Intention comments can be made mandatory, to enforce the documentation of
the code. The compiler enforces that intention comments are present by
generating an error message if a class or method or a long section of code
within a method does not have a corresponding intention comment associated
with it.

To prevent a programmer from just entering an empty or short gibberish
comment to satisfy the compiler, it is envisioned that the compiler will
compute a numeric information content metric for the intention comment, and
a numeric complexity metric for the code that the intention comment
describes. (The simplest metrics are simple counts of characters or lines, but
more complex schemes are possible.) If the compiler determines that the
information content of the comment is not enough to match the
corresponding code (for example, a comment containing just five characters
would be considered insufficient to describe a class containing a thousand
lines of code), a compiler error will be generated. The metrics and thresholds
could be configured for each project. Obviously, this scheme is imperfect and
would be easy to circumvent, and cannot guarantee the quality of the
comment text, but it is an attempt to "enforce" commenting. (The DIDP
approach is obviously not suitable for all projects and teams, but it is suitable
as an aid that could be adopted by project teams that value documentation and
wish to ensure a certain standard of commenting.)

As this discussion has been very abstract, let's now briefly see what intention
comments actually look like in the Java with Intentions language.

Introducing Java with Intentions

The Java with Intentions language (JWI) simply takes the existing Java programming
language and adds support for intention comments. In JWI, intention comments have
two basic forms:

1. Free-standing
2. Inline

Free-standing intention comments

Free-standing intention comments sit inside of Java source code files, but outside of
classes, or within classes but outside of methods. A class or method can be linked to
a freestanding intention comment by referring to its name. For example:

 182

File Flashcard.java

package vocabularytrainer;

intention FlashcardIntention {
 description {
 To represent a flashcard for learning foreign-language vocabulary,
 with a cue (on one side of the card) and a list of one or more
 acceptable answers (on the other side of the card).
 }
}

class Flashcard implementsintention FlashcardIntention {
 ...
}

This explains that the intention of the Flashcard class is to represent a flashcard in a
vocabulary-training application.

At this point, intention comments don’t appear to have any advantage over writing
plain comments, or writing comments with Javadoc. However, if you were to
compile Flashcard.java using the JWI compiler, and class Flashcard did not
declare that it was an implementation of any intention, of if the compiler judged that
the information content of the comment was insufficient, then the compiler would
refuse to compile the code.

To demonstrate the object-oriented features of JWI, let's now use intention comments
to document an instance of the Model-View-Controller pattern. First, we will create
an abstract intention comment to represent the MVC pattern in general:

File ModelViewControllerIntention.java

package vocabularytrainer.abstractintentions;

abstract intention ModelViewControllerIntention {
 description {
 To implement the Model-View-Controller pattern, in order to
 structure the user interface code into separate components.
 This separation of concerns helps improve understandability
 and modifiability.

 The model consists of a representation of the application's data.
 The model notifies listeners (typically, one or more view
 components) when the data changes.

 The view component presents the data to the user in the form of
 UI components. Multiple views based on the same model may exist.

 The controller acts upon input from the user and updates the
 model and/or interacts with the view.
 }

 classreference[] modelClasses;
 classreference[] viewClasses;
 classreference controllerClass;
}

Then we can describe a specific instance or application of the MVC pattern by
declaring an intention comment that extends this abstract intention. In the new
intention comment, we fill in the required fields (in this case, references to classes):

 183

File VocabularyTrainerMVCIntention.java

package vocabularytrainer.intentions;

intention VocabularyTrainerMVCIntention extends ModelViewControllerIntention {
 description {
 To implement the vocabulary trainer user interface according to the
 Model-View-Controller pattern.
 }

 modelClasses = { QuizState, Flashcard, FlashcardList };
 viewClasses = { QuizFrame };
 controllerClass = QuizController;
}

The classes that take part in this pattern can then link themselves to the intention for
the pattern instance. For example:

class QuizController implementsintention VocabularyTrainerMVCIntention {
 ...
}

Now, when new developers join this project and encounter any class that is a part of
this pattern instance, they will be able to read the comments and follow the links to
locate the other components of the pattern and understand their relationships.

Inline intention comments

Within a method, lengthy blocks of code without any descriptive comments will be
flagged by the JWI compiler. To associate comment texts with blocks of code, we
need a syntax for “inline intention comments” that includes start and end tags that
can surround blocks of code. This additionally allows inline intention comments to
be nested, allowing each step of an algorithm to be broken into smaller sub-steps.
The following example illustrates the syntax in JWI:

[[1 | Shuffle the deck of flashcards (flashcardList) by iterating
 through the list and swapping the card at the current position
 with another randomly-chosen card]]
for (int i = 0; i < flashcardList.size(); i++) {
 [[1.1 | Generate a random number, which will serve as the index
 of the card to be swapped with the current index]]
 int otherIndex = randomGenerator.nextInt(flashcardList.size());
 [[/1.1]]

 [[1.2 | Swap the records at indices i and otherIndex]]
 Flashcard tempCard = (Flashcard) flashcardList.get(i);
 flashcardList.set(i, flashcardList.get(otherIndex));
 flashcardList.set(otherIndex, tempCard);
 [[/1.2]]
}
[[/1]]

"Opening" comment tags take the syntax [[commentIdentifier |
descriptionText]] (where the square brackets and vertical bar are literal
characters). The comment identifiers could be virtually any names, but in this
example they follow a hierarchical numbering scheme.

“Closing” comment tags use a slash in front of the comment identifier, similar to
XML.

 184

Summary

By elevating comments to be “first-class citizens” of programming languages,
Design Intention Driven Programming and Java with Intentions attempt to reduce the
long-term burden of program comprehension by encouraging (and forcing)
programmers to record their design intentions in the code, so that present and future
maintainers can spend less time reading and reverse-engineering code.

It is not a perfect scheme, and it is not suitable for all projects and teams. Many
developers would be very resistant to any attempt to force them to write comments,
so the approach is suitable only for project teams where an agreement has been
reached on the value of comments. However, for those who wish to document their
systems, it could be a useful tool.

 185

Appendix H: Ethical issues

H.1 Ethical issues involving the proposed solution

If the Java with Intentions system were to be adopted by a software development
organisation, it would change, to some degree, the way that software development
work is done. The impact of this could include the following issues:

• Asking a developer to spend his or her time documenting code brings benefits
to a future, unknown maintainer, but brings no immediate benefit to the
developer working “now”. Beck argues that this violates the principle of
mutual benefit and breeds ill will in project teams (Beck, 2005, p. 14).

• Developers in commercial firms are rarely evaluated on the “quality” of the
code and documentation they produce; managers conducting performance
reviews seldom inspect and judge code and documentation artefacts (and
sometimes have no direct software development experience themselves).
Developers who spend more time on documentation may be perceived (or
measured) to be less productive than other developers.

• On the other hand, if an organisation’s processes involve “documentation
police” who review documentation for quality, then those developers who are
poor writers, or those whose native language is not the language of the
project (English-as-a-Second-Language speakers in Anglophone countries),
may be negatively evaluated.

• Time spent on documentation slows down the pace of work in the short term,
making software more costly to clients, at least in the short term.

• If expected long-term cost savings and benefits do not emerge, time spent
documenting will be seen as costly, wasted effort.

H.2 Ethical issues involving the survey research

• Due care: Care must be taken in the design and implementation of the survey
to ensure reliability, validity, and neutrality of results and conclusions.
Assumptions, threats to validity, and any other weaknesses in the design that
could affect the results and conclusions must be stated (Weisberg et al., 1996,
p. 352).

• The research should not be intentionally biased to mislead readers or to
support or further a personal viewpoint or agenda. Constant vigilance against
bias is required; the approach and methods must be re-questioned, limitations
of methods must be observed, and work must be reported honestly (M801,
2007, p. 108).

• Informed consent: Survey participants must be informed of the research
topic, who is sponsoring and/or conducting the research, and the purpose of
the survey. Participants should be reminded of the voluntary nature of
participation and must be allowed to decline participation (Weisberg et al.,
1996, pp. 355-357).

• Sensitive topics and confidentiality/anonymity: The planned questionnaire
asks the participant to answer questions about practices at his or her current

 186

organisation, and to express opinions and make judgements about those
practices and software quality. It could be damaging to a participant if his or
her employer became aware of negative views that the participant had
expressed in the questionnaire response. For this reason, responses will be
anonymous; no personally identifying information will be asked for, nor
retained. Note that this policy carries the risk that participants could re-take
the survey multiple times, altering the survey results, and other than being on
the lookout for suspicious patterns of activity, I will have no way of detecting
this.

• I cannot imagine any other way that the survey could cause harm to
participants, other than cost them the time needed to complete it.

 187

Appendix I: Hypothesis testing procedures

I.1 Construction of indices

To support the hypothesis tests of Chapters 3 and 8, indices were constructed to form
measures that aggregate scores from batteries of related questions, using simple
addition (Weisberg et al., 1996, p. 210).

For each index, a value is computed for each survey respondent based on his or her
responses to the questions included in the index. Table 45 lists the indices used in the
analyses.

The notation “inv(x)” indicates that the inverse value of a question response is used.
For Likert scale questions on the scale of 1 to 7, the inverse of 1 is 7, the inverse of 2
is 6, and so on.

Table 45: Indices used in hypothesis tests

No. Name of index Formula to calculate index Range

of index
IND01 General support for

documentation and commenting
inv(Q45) + inv(Q46) +
inv(Q47) + Q48 + inv(Q49)
+ Q50 + Q51 + Q52

8..56

IND02 General support for Java with
Intentions

Q66 + inv(Q67) + Q68 +
inv(Q69) + inv(Q70) + Q71
+ Q72 + Q73 + Q74 + Q75

10..80

IND03 Likelihood of some degree of
frustration or job dissatisfaction
due to perceived deficiencies in
the organisation’s software
documentation practices

inv(Q06) + inv(Q08) +
inv(Q09) + inv(Q10) +
inv(Q40) + Q41 + inv(Q42)
inv(Q43) + inv(Q44) + Q52
+ Q56 + Q57 + Q58 + Q59 +
Q60 + Q61 + Q62

17..119

I.2 Hypothesis testing procedure

The SAS Learning Edition software package was used as an aid in performing the
calculations involved in the statistical analysis.

The statistical procedures given by Schlotzhauer (2009) are used for testing the
hypotheses. As a demonstration, let us use as an example the following hypothesis:

Those respondents who report writing comments regularly
will tend to express the opinion that the proposed solution
could potentially help improve software comprehension.

We use a significance level (alpha) of 0.10, as is discussed in section 3.2.3.

 188

A statistically significant degree of association22 between the following two
questions would provide evidence in favour of that hypothesis:

• Question 51: “I am very diligent about writing comments when I develop or
maintain code.”

• Question 75: “Software projects consistently documented in this way would
be easier to understand than projects developed using traditional techniques.”

First, testing for independence, the Pearson chi-square test gives a p-value of p =
0.1854. As 0.1854 is greater than 0.10, we find insufficient evidence at the 10%
significance level to reject the null hypothesis of independence between the two
variables (ibid., p. 478). In other words, neither variable is dependent on the other.
Normally, testing the association between the two variables is not warranted in such
cases. However, the chi-square test is not always valid for cases involving very few
data points, in which case Fisher’s Exact Test can be used instead (ibid., p. 480).
Fisher’s Exact Test gives a p-value of p = 1.163x10-10. This value is less than the
significance level of 0.10, so the null hypothesis of independence can be rejected; the
variables show dependence at the 10% significance level.

Before we can test the measure of association between the two variables, we must
first formulate a null hypothesis as an inverse of the original hypothesis:

Null hypothesis (H0): Those respondents who report writing
comments regularly will tend not to express the opinion that
the proposed solution can help improve software
comprehension.

Then we must ask whether the measure of association, if it were to be calculated, is
significantly different than zero. Kendall’s Tau-b test gives a p-value of p = 0.5253,
and the Spearman correlation coefficient gives p = 0.6796. As these p-values exceed
0.10, there is no evidence that the association between the two variables is
significantly different than zero at the 10% significance level, so we do not bother
calculating the measures of association. (Had the p-value for Kendall’s Tau-b been
below 0.10, the association according to Kendall’s Tau-b would have been 0.1104;
had the p-value for Spearman’s correlation coefficient been below 0.10, the
association according to Spearman’s correlation coefficient would have been
0.0874.)

We thus fail to reject the null hypothesis. Essentially, this is equivalent to rejecting
the original hypothesis.

22 Association, not correlation, is the correct term in this case as the Likert-scale responses are
considered ordinal rank measures; measures of correlation apply only to continuous variables.

